

DET N ATURV IDEN SKABE L IG E F AKULTET
K Ø B E N H A V N S U N I V E R S I T E T

Bachelorprojekt i Matematik
Institut for Matematiske Fag, Københavns Universitet

Bachelor’s Thesis in Mathematics
Department of Mathematical Sciences, University of Copenhagen

Hans Erik Bugge Grathwohl

Recursion Theory, Turing Degrees and Post’s Problem

Vejleder: Mikael Rørdam

Ekstern Vejleder: Asger Dag Törnquist

Afleveringsdato: 10. juni 2011

i

Abstract

This thesis is an introduction to classical recursion theory. We will
define two notions of computable functions, the Turing computable func-
tions and the partial recursive functions, and argue that these notions
are equivalent. The fundamental results and some historically significant
theorems concerning these functions are proven, for example Kleene’s
Recursion Theorem and Rice’s Theorem. We will define the notion of re-
cursively enumerable sets, and characterize these in different ways. The
notion of computability will then be relativized, such that we can clas-
sify sets and functions according to how much information is required to
compute them, and we define Turing degrees and relate this to the arith-
metical hierarchy. The finite injury priority method is then demonstrated
twice, and with this we will prove the Friedberg-Muchnik Theorem and
solve Post’s problem by confirming the existence of r.e. degrees 0 < a < 0′.

Resumé

Dette projekt er en introduktion til klassisk rekursionsteori. Vi vil
definere to former for beregnelige funktioner, de Turing-beregnelige funk-
tioner og de partielle rekursive funktioner, og argumentere for at disse
to begreber er ækvivalente. De fundamentale resultater samt nogle sæt-
ninger af historisk betydning vil blive vist, for eksempel Kleenes Rekur-
sionssætning og Rices sætning. Vi vil definere de rekursivt nummererbare
mængder og karakterisere disse på forskellige måder. Beregnelighedsbe-
grebet bliver så relativiseret, sådan at vi kan klassificere mængder og
funktioner udfra hvor meget information der er nødvendigt for at kun-
ne beregne dem, og vi vil definere Turinggrader og relatere disse til det
aritmetiske hierarki. Den endeligt afmærkende prioritetsmetode bliver
demonstreret to gange, og denne vil benyttes til at bevise Friedberg-Mu-
chniks sætning og løse Posts problem ved at bekræfte eksistensen af re-
kursivt nummererbare grader 0 < a < 0′.

Contents

Introduction v

 Computability and Recursively Enumerable Sets 
. Turing Computability . 
. Recursive Functions . 
. The Church-Turing Thesis . 
. Universal Turing machines and the Smn Theorem 
. Recursively Enumerable Sets . 
. Finite Approximations . 
. Kleene’s Recursion Theorem . 
. A Normal Form for r.e. Sets . 

 Relative Computability 
. Relative Turing Computability . 
. Relative Recursiveness . 
. Use . 
. Turing Degrees and the Jump Operator 
. The Arithmetical Hierarchy . 
. The Limit Lemma . 

 Finite Injury Priority Method 
. The Friedberg-Muchnik Theorem 
. A Low, Non-Recursive r.e. Degree 

Bibliography 

iii

Introduction

The purpose of this bachelor’s thesis is to be an introduction to classical recur-
sion theory. Classical recursion theory is the study of computable functions
on the non-negative integers. It emerged in the time following Kurt Gödel’s
 incompleteness theorem, which used primitive recursive functions in its
proof, and it was pioneered primarily by Alonzo Church, Kurt Gödel, Stephen
Kleene, Emil Post, and Alan Turing.

The first two chapters will concern the early results, roughly originating
from the period –. Many results from this period, however, are omit-
ted. In particular, only one kind of reducibility is described, the Turing re-
ducibility, whereas many-one reducibility and one-one reducibility are left out
due to space considerations.

The first chapter will focus on results concerning partial recursive func-
tions and recursively enumerable sets. The second chapter will concern the
relativization of the concepts from Chapter , and will describe methods to
classify sets, especially by describing the Arithmetical Hierarchy and relating
this to the Turing degrees. Lastly, the third chapter will solve Post’s problem
by using a proof technique known as the finite injury priority method, a proof
method invented in  which turned out to be a very powerful technique, as
many advanced results were later proven with variants of this method, espe-
cially with the variant known as the infinite injury priority argument.

The primary source for this thesis is Robert Soare’s  book [], and
many of the proofs, and most of the notation, originates from here. The third
chapter, however, is based on Steffen Lempp’s notes on priority arguments
[], because his versions of the priority arguments has a good intuition behind
them, and because the framework he develops is well suited for harder priority
arguments.

Notation. If nothing else is stated, then all sets will consists of non-negative
integers ω = {0,1,2, . . .}. Whenever we refer to a number or integer, it is
implicit that this means such a non-negative integer. Functions will always be
from ωn to ω, n ≥ 1, total functions will generally be identified with lowercase
letters f, g, and partial functions with lowercase greek letters ϕ,ψ.

v

Chapter 1

Computability and Recursively
Enumerable Sets

In this chapter, some of the most basic concepts of interest in the study of
recursion theory are introduced.

Recursion theory concerns computable functions. Informally, a function is
computable if it is possible to determine its output in an effective manner, i.e.,
there has to be a finite set of instructions, which with an input x after a finite
amount of steps yields the output y. To be able to study these functions we
require a specific model of computability. We will introduce two different mod-
els of computability. One of these is Turing computability, introduced in 
by A.M. Turing in []. Here he introduced a machine, which was inspired by
the observation of how a human person would compute the value of a func-
tion, and which limitations he would have. For example when performing the
computation, he can only have a finite number of symbols under observation
at a given time, and his memory is also finite, etc. This machine is now called
a Turing machine and it can in essence perform the same atomic acts as a
human computer.

The other model which has roots in Peano arithmetic concerns the recursive
functions and is a more classical mathematical approach to the problem. Both
models have its strengths. The Turing model contains some great analogies
to how a result of some problem is calculated “in real life” by some human or
computer, while the recursive functions are closely connected to arithmetic.
As it turns out, we will not have to choose one model over the other, for they
define the same notion of computability.

1.1 Turing Computability

We will define a Turing machine M as in []. It consists of a two-way infinite
tape divided into cells, each containing a symbol from S = {B,1} (blank or 1),



 CHAPTER 1. COMPUTABILITY AND R.E. SETS

a reading head which can scan one cell at a time, and a finite set of internal
states Q = {q0, q1, . . . , qn}, n ≥ 1. At each step, the machine can: change from
one state to another; change the scanned symbol s to another symbol s′ ∈ S;
and move the reading head one step to the right (R) or left (L) on the tape.
M is then controlled by a partial function

δ ∶ Q × S → Q × S × {R,L}

called the transition function, which, given the current state and the scanned
symbol, tells the machine what to do in the next step. We will view δ as a finite
list of quintuples (q, s, q′, s′,X) ∈ δ, which we regard as the Turing program.
The input integers x1, . . . , xn to the machine are represented by strings of xi+1
consecutive 1’s separated by a B, where all other cells are blank.

The machine begins in the starting state q1, where the reading head is
scanning the left-most 1 of the input. If the machine ever reaches the halting
state q0, we say that the machine halts with the output given by the total
number of 1’s on the tape.

We define a configuration c of M at a given step to be: the current state;
the symbol being scanned; the symbols to the right of the reading head; and
the symbols to the left of the reading head, viz.,

s−m . . . s−1 qi s0 s1 . . . sn.

A Turing computation according to a halting Turing program P with input x
is then a finite sequence of configurations, c0, c1, . . . , cn, c0 being the starting
configuration, and cn being the configuration when the halting state is reached.
We arrive at the following definition.

Definition ... A partial function ψ of n variables is Turing computable if
there is a Turing program P , such that P with x1, . . . , xn as input halts with
output y iff ψ(x1, . . . , xn) = y.

Here we use the following definition of a partial function:

Definition ... A partial function ψ on ω is a function ψ ∶ A → ω with
A ⊆ ω. If x ∈ A we say that ψ(x) is defined, and write it ψ(x) ↓, ψ(x) ↓= y or
just ψ(x) = y. If x /∈ A we say ψ(x) is undefined and write it ψ(x) ↑. If A = ω
we say that ψ is total.

1.2 Recursive Functions

Another way of defining a class of computable function, is by defining them
recursively from a basic set of functions. We start by defining the primitive
recursive functions, and then extend this to the partial recursive functions,
following [].

1.2. RECURSIVE FUNCTIONS 

In the following definition, we introduce the three basic function types, and
then two rules of construction which are used to build more advanced functions
up from the basic functions.

Definition ... We define the class of primitive recursive functions as
the smallest class C of functions ωn → ω, n ∈ ω, closed under the following
schemata:

(i) The successor function, S(x) = x + 1 is in C.

(ii) The constant functions, Cnm(x1, . . . , xn) =m are in C, where n,m ≥ 0.

(iii) The projections, Pni (x1, . . . , xn) = xi, are in C, where n ≥ 1, 1 ≤ i ≤ n.

(iv) (Composition) If g1, g2, . . . , gm and h ∈ C, then

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

is in C where g1, . . . , gm are functions of n variables and h is a function
of m variables.

(v) (Primitive Recursion) If g, h ∈ C and n ≥ 1 then f ∈ C where

f(0, x2, . . . , xn) = g(x2, . . . , xn)

f(x1 + 1, x2, . . . , xn) = h(x1, f(x1, x2, . . . , xn), x2, . . . , xn)
assuming g and h are functions of n − 1 and n + 1 variables respectively.

Contained in this C are now all the usual functions from basic number
theory. A function f is in C if there is a derivation f1, . . . , fn = f , where each
fi is either one of the primitive functions in (i), (ii), (iii), or obtained from
{fj ∶ j < i} by (iv) or (v).

Consider for example multiplication. Let f(x, y) = x ⋅ y. We see that
f(0, y) = 0 ⋅ y = 0, and f(x + 1, y) = (x + 1) ⋅ y = x ⋅ y + x = f(x, y) + x. So f has
the following derivation. The applied schemata are noted to the right.

f1(x) = x + 1 (i)
f2(x1, x2) = x1 (iii)
f3(x1, x2, x3, x4) = x2 (iii)
f4 = f1 ○ f3 (iv)
f5(0, x2, x3) = f2(x2, x3)
f5(x1 + 1, x2, x3) = f4(x1, f5(x1, x2, x3), x2, x3) (v)
f6(x) = 0 (ii)
f7(0, x2) = f6(x2)
f7(x1 + 1, x2) = f5(x1, f7(x1, x2), x2) (v)

Note that f5(x1, x2, x3) = x1 + x2, so f7 = f , and thus f1, . . . , f7 is a primitive
recursive derivation of multiplication. On pp. - of [], all of the usual
number theoretic functions of ω are listed, and they are primitive recursive.

 CHAPTER 1. COMPUTABILITY AND R.E. SETS

But our motivation for introducing recursive functions is not only to be
able to recreate arithmetic—the goal is to include all computable functions in
this mathematical notion. The primitive recursive functions, though, are not
strong enough for this, as we will see.

Every primitive recursive functions can be derived in a finite number of
steps from (i)-(v). Thus we can make a listing of all primitive recursive func-
tions, i.e., a surjective map from ω to the class of primitive recursive functions
(a useful technique called encoding which could be used for this, is introduced
below). Let fn denote the n’th primitive recursive function in this listing.
Now consider the function g(x) = fx(x) + 1. This is clearly computable—just
compute fx(x) and add one—but we see that fn /= g for all n, and thus g is
not primitive recursive. This is an example of an argument which is called
Cantor’s diagonal method, or a diagonal argument.

To avoid this problem, we introduce the notion of partial recursive func-
tions.

Definition ... We define the class of partial recursive functions (p.r. func-
tions) to be the smallest class C of partial functions closed under the schemata
(i)-(v) of Definition .., as well as the schema

(vi) (Unbounded Search) If θ(x1, . . . , xn, y) ∈ C and

ψ(x1, . . . , xn) = µy [θ(x1, . . . , xn, y) ↓= 0 ∧ (∀z ≤ y)[θ(x1, . . . , xn, z) ↓]]

then ψ ∈ C.

Here µy R(y) means the least y that fulfills R(y).
When a partial recursive function is total, we either call it a total recursive

function or just a recursive function.

The afore mentioned diagonal argument does not work on these p.r. func-
tions. We can still make a listing of these functions. Let θn be the n’th p.r.
function under this listing, and let ψ(x) = θx(x) + 1 if θx(x) ↓ and ψ(x) ↑
otherwise. Now we can have a x0 such that θx0 = ψ without problems, since
θx0(x0) can just be undefined.

Definition ... When we say that a relation or a set has some property (for
example “R ⊆ ωn is primitive recursive” or “A ⊆ ω is recursive”) then we mean
that the characteristic function has this property (χR is primitive recursive,
χA is total recursive).

By characteristic function, we refer to the standard definition where χA is
the characteristic function of A iff

χA(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ∈ A,
0 if x /∈ A.

1.3. THE CHURCH-TURING THESIS 

We can view a set of natural numbers as being a decision problem, where we
can ask if a number belongs to the set or not. Thus, a set A is decidable iff it is
recursive, as this means we for any number x in an effective manner can decide
whether x ∈ A by computing χA(x). If a set is not recursive, it is undecidable.

1.3 The Church-Turing Thesis

Definition ... We define an encoding of finite sequences of numbers to be
an injective function E ∶ ω<ω → ω, and we say that a number is a sequence
number if it is in the range of E. We call E primitive recursive if E(ω<ω) is
primitive recursive, and if the following operations are primitive recursive:

• The restriction En =def E∣ωn of E to sequences of length n + 1.

• The length function

lh(x) =
⎧⎪⎪⎨⎪⎪⎩

z if E−1(x) exists and have length z,
0 otherwise.

• The extractor function

(x)y =
⎧⎪⎪⎨⎪⎪⎩

z if E−1(x) exists, with z being its y’th number,
0 otherwise.

Definition ... We define the pairing encoding, by using Cantor’s pairing
function ⟨⋅, ⋅⟩ ∶ ω2 → ω,

⟨x, y⟩ = 1
2
(x + y)(x + y + 1) + x,

which is a primitive recursive bijection. First we expand this to n ≥ 2 by
induction:

⟨a1, . . . , an⟩n = ⟨a1, ⟨a2, . . . , an⟩n−1⟩
where ⟨⋅, ⋅⟩2 = ⟨⋅, ⋅⟩, and we let ⟨a1⟩1 = a1. By induction, these are also bijective
and primitive recursive. Now define E by:

E() = 0
E(a1, . . . , an) = ⟨n, ⟨a1, . . . , an⟩n⟩.

Theorem ... The pairing encoding is primitive recursive.

Proof. E is bijective, so x ∈ E(ω<ω) ⇐⇒ x ∈ ω, thus the image is primitive
recursive.

En is clearly primitive recursive. Let f ∶ ω → ω2 be the inverse of ⟨⋅, ⋅⟩, and
denote by f1, f2 the two coordinate functions of f , such that ⟨f1(x), f2(x)⟩ = x
for all x. These are also primitive recursive, and so especially is lh(x) = f1(x).

 CHAPTER 1. COMPUTABILITY AND R.E. SETS

To extract a number from a sequence, note that if ⟨a1, . . . , an⟩ = b, then
a1 = f1(b), a2 = f1 ○ f2(b), and so ai = f1 ○ f i−1

2 (b) for i < n and an = fn2 (b). So

(x)y =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f1 ○ fy2 (x) if y < lh(x),
fy2 (x) if y = lh(x),
0 otherwise,

is primitive recursive.

We will now use the pairing encoding to assign code numbers to the Turing
programs and all possible Turing computations.

Recall the fact that every Turing program is fully determined by a finite
set of quintuples.

Every sequence of numbers a1, . . . , ak can be identified with such a quintu-
ple in the following way. If k ≥ 5, then let

(qa1 , sa2 , qa3 , sa4 , ra5) ∼ a1, . . . , ak

where

si =
⎧⎪⎪⎨⎪⎪⎩

B if i ≡ 0 mod 2
1 otherwise,

and

ri =
⎧⎪⎪⎨⎪⎪⎩

R if i ≡ 0 mod 2
L otherwise.

If k < 5, let the missing indices be 0. So by identifying every quintuple of
a Turing program, and encoding one of their corresponding sequences with
the pairing encoding, a program now consists of some sequence x1, . . . , xn of
numbers. Encode these numbers, and we have obtained a code number x for
the Turing program.

This encoding was done in a bijective fashion—we can from any number
x construct any of its lh(x) quintuples by obtaining ((x)j)i for 1 ≤ j ≤ 5, and
thus have a Turing program. From the primitive recursiveness of the pairing
encoding it follows that this encoding is also primitive recursive.

Definition ... The Turing program obtained from the code number e is
denoted Pe, and the partial function computed by the Turing program Pe is
denoted ϕe.

We will now create a similar primitive recursive encoding for the Turing
computations. Recall that a computation according to Pe consists of configu-
rations c1,⋯, cn. Each configuration is on the form

s−m . . . s−1 qi s0 s1 . . . sn.

1.3. THE CHURCH-TURING THESIS 

and thus any sequence a1,⋯, ak can be identified with a configuration in the
following way.

a1,⋯, ak ∼ ⋯ sa3 qa1 sa2 ⋯
where si is defined as above. We define the encoding of the computation to
be the pairing encoding of the sequence e, d1,⋯, dn, where di is the pairing
encoding of a sequence corresponding to the configuration ci.

Theorem .. (Normal Form Theorem). The predicate T (e, x, y) (Kleene’s
T -predicate) asserting that y is the code number of a computation according
to Turing program Pe on input x is primitive recursive, and there exists a
primitive recursive function U(y) such that

ϕe(x) = U(µy T (e, x, y))

for all e, x.

Proof. Let e, x, y be given. Obtain from e the Turing program Pe, and see if
y is the code number of a computation. If not, then T (e, x, y) does not hold.
If it is, call this computation c1, . . . , cn. Now check whether Pe given x yields
exactly this computation. If it does, then T (e, x, y) holds, and if not then
T (e, x, y) does not hold. Since the encodings are all primitive recursive, then
so is T .

Define U(y) as the number of 1’s in the configuration recovered from
(y)ln(y)—this is also primitive recursive. Thus ϕe(x) = U(µy T (e, x, y)).

Remark. This can be extended to functions with multiple inputs, i.e. one can
find predicates Tn(e, x1, . . . , xn, y) that are primitive recursive such that

ϕ(n)e (x1, . . . , xn) = U(µy Tn(e, x1, . . . , xn, y)).

It follows from the above Normal Form Theorem, that every partial func-
tion computable in the Turing machine sense is also a partial recursive function.
By constructing Turing machines corresponding to each schema (i)-(vi) it can
be shown that any p.r. function will also be Turing computable, see § in [].
Hence these two classes of partial functions are the same.

The Church-Turing Thesis states that not only does our two definitions
of computability give rise to the exact same class of functions, these are also
exactly the functions which are computable in the intuitive sense, i.e., those
which can be calculated with some algorithm. Given the informal nature of
the thesis it is improvable, but it is widely accepted. All attempts to formalize
the notion of computability has ended up with being equivalent to each oth-
er—another example being Church’s λ-calculus. The thesis is discussed in pp.
-, - in [], pp. - in [] and in [].

The Church-Turing Thesis is central to the motivation of recursion theory;
it is what makes the subject concern the interesting epistemological notion

 CHAPTER 1. COMPUTABILITY AND R.E. SETS

that is computability, instead of concerning some meaningless formal system.
Also, it is an invaluable tool for making our proofs easier to comprehend. In
the following we will often rely on “loose” mathematical notation to define
recursive functions, but in all cases this can be translated to one of the formal
definitions.

1.4 Universal Turing machines and the Sm
n

Theorem

In this section we will formulate some basic and important theorems about
p.r. functions.

Lemma .. (Padding Lemma). Every p.r. function ϕe has infinitely many
indices, and we can effectively find an infinite set containing such indices.

Proof. Let Pe be any program, which we recall is a finite list of quintuples
which tells the machine how to act. This will mention a finite number of
states {q0, . . . , qn}. By adding the instruction (qn+1,B, qn+1,R) to Pe, we will
not change the behaviour of the program, as there is no way for the machine
to reach the state qn+1. The coding of this Turing program however, will be
higher than e. Repeat this for all numbers larger than n, and we will have an
infinite set of indices.

The following theorem postulates the existence of a universal Turing ma-
chine. Also introduced in  in [], this is a Turing machine which is able to
simulate any other Turing machine, by taking its program as an input. Com-
pare this to a modern computer operating system, which is a program that is
able to execute any other program.

Theorem .. (Enumeration Theorem). Given n ≥ 1, there exists a p.r.
function ϕzn(e, x1, . . . , xn) of n + 1 variables, such that

ϕzn(e, x1, . . . , xn) = ϕe(x1, . . . , xn)

for all e and x1, . . . , xn.

Proof. By Theorem .. in its extended form, let

ϕzn(e, x1, . . . , xn) = U(µy T (e, x1, . . . , xn, y)) = ϕe(x1, . . . , xn).

Our next theorem, the Smn Theorem, is in spirit the converse of the Enu-
meration Theorem. Visualize the p.r. functions ordered in a matrix where the
n’th column contains all the n-ary functions. The Enumeration Theorem tells
us that all the information in the n’th column is contained in a single cell in

1.5. RECURSIVELY ENUMERABLE SETS 

the n+ 1’th column, whereas the next theorem on the other hand will provide
an effective way to pass from any cell in the m+n’th column to a range of cells
in the m’th column.

Theorem .. (Kleene’s Smn Theorem). For every m,n ≥ 1 there is an in-
jective recursive function Smn (e, y1, . . . , ym) of m+1 variables, such that for all
e, x1, . . . , xn, y1, . . . , ym,

ϕSm
n (e,y1,...,ym)(x1, . . . , xn) = ϕe(y1, . . . , ym, x1, . . . , xn).

Proof. Call x = x1, . . . , xn and y = y1, . . . , ym. Let the program PSm
n (e,y)

on
input x first obtain Pe and then apply Pe to the input (y,x). This is an effec-
tive procedure in x and y, so by the Church-Turing Thesis, Smn is a recursive
function. If Smn is not injective, we can find an injective function S′mn such
that ϕSm

n (e,y)
= ϕS′mn (e,y) by using the Padding Lemma: Every time an index

has been used before, just choose another index for the same program which
is unused.

A more formal proof can be found in § of []. This theorem proves useful
in many of the basic computability results. Often it is used in the same way,
namely as stated by the following corollary:

Corollary ... For every p.r. function ψ(x, y) there is a recursive function
f such that ϕf(x)(y) = ψ(x, y).

Proof. Find an index e of ψ. Let f(x) = S1
1(e, x) which exists and is recursive

by the theorem.

As an example of an application of the Smn Theorem, consider the following:
We wish to find a recursive function f such that ϕf(x,y) = ϕx ○ ϕy. Therefore
we define the p.r. function

ψ(x, y, z) =
⎧⎪⎪⎨⎪⎪⎩

ϕx(ϕy(z)) if ϕy(z) ↓,
undefined otherwise.

Fix an index e for ψ so ψ = ϕe, and use S2
1(e, x, y) to “hard code” the parameters

x, y into e to obtain f(x, y) = S2
1(e, x, y).

1.5 Recursively Enumerable Sets

Definition ... We call a set A recursively enumerable (since this name is
rather unwieldy, we will refer to them as r.e. sets) if it is the domain of some
p.r. function ψ, in symbols: A = {x ∶ ψ(x) ↓}. We list the r.e. sets according
to the numbering of p.r. functions, so we let the e’th r.e. set be the domain of
ϕe, denoting it We = {x ∶ ϕe(x) ↓}.

 CHAPTER 1. COMPUTABILITY AND R.E. SETS

In the literature these are often known as computably enumerable (c.e.)
sets, as their definition is independent on the choice of computability model,
but we will use the original name. An r.e. set corresponds with a notion of
semieffectiveness: Given a r.e. set We, one can check whether some number x
lies in We by seeing if ϕe(x) converges. But if it does not, we will have to wait
forever to find out, and thus we can never get a negative answer.

Later we will show that if for some set A, both its complement and itself
is r.e., then it must be recursive, as it can be effectively decided whether any
element is a member of A.

Some r.e. sets are of special importance in the further study of the subject.

Definition ... We define two important r.e. sets

K = {x ∶ ϕx(x) ↓}
K0 = {⟨x, y⟩ ∶ ϕy(x) ↓}

Recall that ⟨⋅, ⋅⟩ denotes Cantor’s pairing function.

To see that K and K0 are r.e., use ϕz1 from the Enumeration Theorem to
obtain the p.r. function ψ(x) = ϕz1(x,x) = ϕx(x). Now K = {x ∶ ψ(x) ↓},
and is thus r.e. Similarly, let ψ0(⟨x, y⟩) = ϕz1(y, x) so we can see that K0 =
{⟨x, y⟩ ∶ ψ0(⟨x, y⟩) ↓} is r.e.

The halting problem is to decide whether some program given an input will
eventually terminate, or equivalently, whether some p.r. function ϕy is defined
for input x. Therefore, this is equivalent to deciding whether ⟨x, y⟩ ∈ K0. K0

is also called the halting set, and K the diagonal halting set.

Proposition ... Neither K nor K0 is recursive, and thus the halting prob-
lem is undecidable.

Proof. Firstly, we assume for contradiction that K is recursive, and thus χK
is a total recursive function. But then we can define a new total recursive
function f by

f(x) =
⎧⎪⎪⎨⎪⎪⎩

ϕx(x) + 1 if χK(x) = 1,
0 if χK(x) = 0.

Yet now, f /= ϕx for any x, and thus f cannot be recursive. Hence, K cannot
be recursive.

Now assume that K0 is recursive. Since ⟨x,x⟩ ∈K0 iff x ∈K, then K must
also be recursive, which we already have established it is not. Hence, K0 is
not recursive either.

1.6 Finite Approximations

As it is central to the concept of computability that a computation is done in
a finite number of steps, we will introduce a way of writing how many steps

1.7. KLEENE’S RECURSION THEOREM 

are actually used to obtain a result. Here the Turing machine definition will
be used, as this provides us directly with a method to count the amount of
steps in a given computation.

Definition ... We define ϕe,s(x) inductively. Let ϕe,0(x) be undefined for
all x. Let ϕe,s+1(x) ↓= y iff either ϕe,s(x) ↓= y, or s = ⟨e, x, y, t⟩ for some t and
the Turing program Pe has halted with output y in less than t steps.

The above definition seems a bit overly complicated. Intuitively, s is just
the amount of steps allowed to use in the calculation. A convenient conse-
quence of this definition is, that for each s, there is at most one ⟨e, x⟩ such
that ϕe,s(x) ↓ and ϕe,s−1(x) ↑.

Now ϕe,s provides some notion of whether ϕe converges, because obviously

ϕe(x) ↓ ⇐⇒ ∃s ϕe,s(x) ↓ .

Now, a natural decision problem to consider, is the problem of deciding whether
ϕe,s(x) is defined for some e, s, x. But since one only has to check for a finite
number of steps, this must be computable. Hence we can formulate the follow-
ing theorem, which will be useful in deciding the complexity of other sets.

Theorem ... The sets

{⟨e, x, s⟩ ∶ ϕe,s(x) ↓}

{⟨e, x, y, s⟩ ∶ ϕe,s(x) = y}
are recursive.

Now we will define some subsets of the r.e. sets.

Definition ... We define

We,s = {x ∶ ϕe,s(x) ↓}.

Consider We,s. Any element x ∈ We,s must then also fulfill x ∈ We,s+1,
thus We,s ⊆ We,s+1. We can also easily see that We = ⋃sWe,s. Therefore We

is approximated by {We,s}s∈ω – we call this an enumeration of We. So it is
meaningful to think of an r.e. set as constructed in countably many steps.
From the rather complicated Definition .. it follows, that for any step s
there is at most one We which receives a new element x, and specifically, at
any step in the construction of We there is at most added one new element.

1.7 Kleene’s Recursion Theorem

At this point we are able to formulate a very elegant result of recursion theory.
It is the following theorem, known as Kleene’s Fixed Point Theorem or the
Recursion Theorem, the first version of which is stated very subtly in the last
two lines of § in [].

 CHAPTER 1. COMPUTABILITY AND R.E. SETS

Theorem .. (Recursion Theorem). For every recursive function f , there
is an n such that ϕn = ϕf(n). We call this a fixed point of f . It follows that
Wn =Wf(n).

Proof. The strategy for this proof is at first a bit odd. It looks like a diagonal
argument, yet it yields the opposite result of what is expected from this. This
is because of the strong properties of the Smn Theorem.

Use the Smn Theorem to define the recursive function d(u) by

ϕd(u)(z) =
⎧⎪⎪⎨⎪⎪⎩

ϕϕu(u)(z) if ϕu(u) ↓,
undefined otherwise.

We now have that d is total and injective. If we think about the matrix

ϕϕ1(1) ϕϕ1(2) ϕϕ1(3) . . .

ϕϕ2(1) ϕϕ2(2) ϕϕ2(3)

ϕϕ3(1) ϕϕ3(2) ϕϕ3(3)

⋮ ⋱

where ϕϕx(y) is the totally undefined function if ϕx(y) ↑, then ϕd(u) is exactly
the diagonal of this matrix. But the Smn Theorem also ensures that d(u) is
recursive so it has an index e, and therefore the row ϕϕe(x) is identical to the
diagonal.

Now let some recursive function f be given. We can find an index v such
that

ϕv = f ○ d.

In some sense, we can think of this as mapping the row ϕd(u) to the row ϕf○d(u).
But using the diagonal properties of d, they must overlap at the v’th element,
namely:

ϕd(v) = ϕϕv(v) = ϕf(d(v)).

Corollary ... For every p.r. function ψ(x, y) there is an index e such that
ϕe(y) = ψ(e, y).

Proof. Using the Smn Theorem, find a recursive function f such that ϕf(x)(y) =
ψ(x, y). Now take a fixed point e of this f , so

ϕe(y) = ϕf(e)(y) = ψ(e, y).

Using this knowledge, we can now prove another elegant result first shown
by H.G. Rice in [].

1.8. A NORMAL FORM FOR R.E. SETS 

Theorem .. (Rice’s Theorem). For any class C of p.r. function which
is non-trivial, i.e. neither empty nor containing all p.r. functions, the set
{x ∶ ϕx ∈ C} of indices is non-recursive.

Proof. Assume that C is a non-trivial class of p.r. functions, and its set of
indices is recursive. Fix two p.r. functions ψ1, ψ2 with ψ1 ∈ C and ψ2 /∈ C. The
following function is then recursive

f(x, y) =
⎧⎪⎪⎨⎪⎪⎩

ψ2(y) if ϕx ∈ C,
ψ1(y) otherwise.

By Corollary .. we can find an e such that ϕe(y) = f(e, y). We now ask:
Is ϕe ∈ C? If it is, then ϕe(y) = f(e, y) = ψ2(y), but ψ2 /∈ C. It it is not, then
ϕe(y) = f(e, y) = ψ1(y), but ψ1 ∈ C. Thus both answers leads to contradiction,
and hence the index set cannot be recursive.

It follows from Rice’s Theorem, that there is no effective way to decide if
some algorithm has a certain property.

1.8 A Normal Form for r.e. Sets

In the following, we will introduce a method which can be used to easily state
whether a set is r.e. or not. To do this, we must introduce the notion of a
Σ1-set. Later we will see this concept generalized.

Definition ... A set A is Σ1 if

x ∈ A ⇐⇒ ∃y R(x, y)

where R is some recursive relation.

It does not matter if there are more than one ∃-quantifier in the definition.
If a set A is defined by

x ∈ A ⇐⇒ ∃y1 ∃y2 . . .∃yn R(x, y1, . . . , yn)

where R(x, y1, . . . , yn) is a recursive relation, we can encode y1, . . . , yn into a
single integer y. Define the recursive relation R′(x, y) by

R′(x, y) ⇐⇒ R(x, (y)1, . . . , (y)n),

for then
x ∈ A ⇐⇒ ∃y R′(x, y),

and so A ∈ Σ1.

Theorem .. (Normal Form Theorem for r.e. sets). A set A is r.e. iff A is
Σ1.

 CHAPTER 1. COMPUTABILITY AND R.E. SETS

Proof. If A is r.e., then it is the domain of some p.r. function ϕe. Recall from
the above Normal Form Theorem the primitive recursive predicate T . With
this, we have that

x ∈ A ⇐⇒ ∃y T (e, x, y),

and thus A must be Σ1.
If on the other hand we assume that A = {x ∶ ∃y R(x, y)} where R is

recursive, then define the function ψ(x) = µy R(x, y) which must be p.r. Now
A is the domain of ψ, and thus it is r.e.

We can demonstrate this characterization with K and K0. Recall the
definition of K,

K = {x ∶ ϕx(x) ↓} = {x ∶ ∃s [ϕx,s(x) ↓]}

and since by Theorem .. the relation R(x, s) = {(x, s) ∶ ϕx,s(x) ↓} is
recursive, K must be Σ1 and hence r.e. Likewise we can see that K0 is r.e.
from

K0 = {⟨x, y⟩ ∶ ϕy(x) ↓} = {⟨x, y⟩ ∶ ∃s [ϕy,s(x) ↓]}.

We will now examine an interesting relation between graphs and partial
recursiveness. We recall the standard notion of a graph.

Definition ... The graph of a partial function ψ is the relation

(x, y) ∈ graphψ ⇐⇒ ψ(x) = y.

Theorem .. (Graph Theorem). A partial function ψ is p.r. iff its graph
is r.e.

Proof. Assume first that ψ = ϕe is p.r. Now the graph is given by

graphϕe = {(x, y) ∶ ∃s [ϕe,s(x) = y]},

which is r.e. by the Normal Form Theorem .. and Theorem ...
Now assume that for some ψ, graphψ is r.e. Thus there is a recursive

relation R so
(x, y) ∈ graphψ ⇐⇒ ∃z R(x, y, z).

Since R is recursive, we can define the p.r. function θ(x) as follows: Given x,
find the smallest pair ⟨y, z⟩ such that (x, y, z) ∈ R, and output y. Now θ(x) is
defined iff (x, θ(x)) ∈ graphψ, and so by Definition .. θ = ψ.

A good way to think of an r.e. set, is to think of it as one whose members
can be effectively listed (recursively enumerated), as A = {a0, a1, . . .} with some
algorithm. This, though, is not clear from the definition, but it follows from
the following basic result which explains the name r.e.

1.8. A NORMAL FORM FOR R.E. SETS 

Theorem .. (Listing Theorem). A set A is r.e. iff it is the range of some
total recursive function f , or if it is empty.

Proof. Let A be a non-empty r.e. set, thus A =We for some e. We will create
a recursive functions f such that A is exactly the range of f . First we will
fix the smallest integer ⟨s, a⟩ such that a ∈ We,s. This a will be the ‘default’
element in our listing. Then we define f by

f(⟨s, x⟩) =
⎧⎪⎪⎨⎪⎪⎩

x if x ∈We,s+1 but x /∈We,s,
a otherwise.

Now for any element x ∈ A, there will be some s such that f(⟨s, x⟩) = x,
and every output of f will be an element of A, thus A is the range of f . So
f(0), f(1), . . . is a listing of all elements of A, where any element except the
default a occurs only once.

Conversely, let A be the range of the recursive function ϕe. Then A is
exactly the set

{y ∶ ∃x [ϕe(x) = y]} = {y ∶ ∃s ∃x [ϕe,s(x) = y]},

which is r.e. If A = ∅ then it is trivially r.e.

The following theorem first published by Post in [] binds the two concepts
of r.e. sets and recursive sets together, in the way intuitively explained above.

Theorem .. (Complementation Theorem). A set is recursive iff both the
set itself and its complement are r.e.

Proof. If A is recursive, then also is A, since we can define its characteristic
function just by flipping the values of χA. A recursive set is also r.e., A is for
instance the domain of

ψ(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if χA(x) = 1,
undefined otherwise.

Thus A and A are r.e.
If we assume A and A are r.e., then there are indices e, i so A = We and

A =Wi. Now define

f(x) = µs [x ∈We,s or x ∈Wi,s],

which is total recursive. Now x ∈ A iff x ∈We,f(x), so A is recursive.

Chapter 2

Relative Computability

In order to study more complex concepts of recursion theory, we will need
to expand our idea of computability. Introduced in  by Turing in [] is
the concept of an oracle machine, which in essence is a Turing machine with
the ability to consult some ‘oracle’ which has all the answers to some number
theoretic problem. Later, an analogous technique is introduced for recursive
functions as seen in page  of [].

2.1 Relative Turing Computability

We will relativize the above definition of a Turing machine by defining the
oracle machine as a normal Turing machine, but with an extra tape which is
‘read-only’. Call this the oracle tape, and call the old tape the work tape. The
alphabet for the oracle tape is So = {B,0,1}, and the contents of the tape
is to be the characteristic function of some set A, with the starting position
denoting χA(0), thus all cells left of this contains only B, and all cells right of
this contains either 0 or 1. The reading head will move in the same direction
on both tapes simultaneously. Recalling how we defined a Turing program, we
now use the same symbols to define an oracle Turing program to be the partial
function

δ ∶ Q × S × So → Q × S × {R,L},

where δ(q, a, b) = (p, c,X) indicates that the machine in state q reading the
symbol a on the work tape and the symbol b on the oracle tape, passes to the
state p, print the symbol c over a on the work tape, and moves one step to
X on both tapes. We define the input and output in the same way as above
for Turing machines. A thing that will be interesting is, how many cells of the
oracle tape which are scanned. If y is the number of non-blank cells scanned on
the oracle tape, then the maximum integer which is tested for membership of
A in the program is y−1. We say that all z < y are used in the computation. It
is clear that this new definition is stronger than the previous, as every Turing



 CHAPTER 2. RELATIVE COMPUTABILITY

program can be written as an oracle Turing program, by defining δ as a partial
function of Q and S, and not So.

Definition ... We say that a partial function ψ of n variables is Turing
computable in A if there is some oracle Turing program P such that on a
machine with χA written on the oracle tape, then for all x1, . . . , xn, y, P on
input x1, . . . , xn halts with output y iff ψ(x1, . . . , xn) ↓= y.

In the same way as for the usual Turing programs, we are able to make an
effective primitive recursive encoding of the oracle Turing programs. We again
call the e’th program Pe.

2.2 Relative Recursiveness

We will now define the analogous concept for recursive functions.

Definition ... We say that a partial function ψ is partial recursive in A
if it can be derived from the characteristic function of A and the schemata
(i)-(vi) from Definitions .. and ...

Once again, these definitions give rise to the same functions, so we can
formulate the following theorem, proved in § and § of [].

Theorem ... The partial function ψ is Turing computable in A iff ψ is
partial recursive in A.

Also, we will accept the Church-Turing Thesis with respect to relative
computability, which say that the functions Turing computable in A are exactly
the functions computable in A in the intuitive sense. Thus we still allow
ourselves to use the most easily comprehended notation when defining relative
recursive functions, as long as it is clear that it can be translated to one of the
formal definitions.

When writing these relative computable functions we will introduce a new
notation.

Definition ... If ψ is computable in A by some program Pe, we write
ψ ≤T A, and we call this function ψ = JeKA. If A = ∅ we write JeK instead of
JeK∅ (note that then JeK = ϕe).

The reason for introducing a new notation and not just use ϕAe is partly
to ease reading by having fewer subscripts, but is also to put emphasis on the
code number of a function, as this is a complete description of the function.
We will speak of sets and relations as being A-recursive, or recursive in A, if
their characteristic functions are recursive in A.

2.3. USE 

2.3 Use

As mentioned, it will be important to have a notion of how large numbers are
used in a computation. Compare the following definition with Definition ...

Definition ... We write JeKAs (x) = y if x, y, e < s and JeKA(x) = y in less
than s steps according to Pe, and if only numbers smaller than s are used in
the computation.

We denote binary strings of 0’s and 1’s with the greek letters σ, τ, . . . , and
use them to denote an initial segment of a characteristic function.

Definition ... A binary string σ of length n is a function σ ∶ {0, . . . n} →
{0,1}. We denote the length of a string with lh(σ). We will write σ ⊂ A if
σ(x) = χA(x) for all x ≤ lh(σ). Define the restriction of A to x, written A ↾ x,
as the string of length x with A ↾ x ⊂ A. Similarly define σ ↾ x as σ restricted
to arguments less than x.

Furthermore we define string concatenation as follows. If α is a binary
string of length n1 and β is a binary string of length n2, then αˆβ is a binary
string of length n1 + n2 with

(αˆβ)(i) =
⎧⎪⎪⎨⎪⎪⎩

α(i) if i ≤ n1,
β(i − n1) if n1 < i ≤ n1 + n2.

We can easily find an effective coding of these strings, so when referring to
a string, we can handle it like a number, which will be practical in some cases.
We can use these strings to introduce another notion of finite approximation.

Definition ... Let σ be a string. We write JeKσs (x) = y if σ is the initial
segment of some set A with JeKAs (x) = y with only numbers smaller than lh(σ)
being used in the computation. We write JeKσ(x) = y if ∃s [JeKσs (x) = y].

Theorem .. (Master Enumeration Theorem).

(i) {⟨e, σ, x, s⟩ ∶ JeKσs (x) ↓} is recursive,

(ii) {⟨e, σ, x⟩ ∶ JeKσ(x) ↓} is r.e.

Proof. (i) To see whether JeKσs (x) converges for given e, σ, x, s, one must
check whether the program Pe with σ as oracle halts with x as input in
less than s steps. As this is a finite procedure, it must be recursive.

(ii) {⟨e, σ, x⟩ ∶ JeKσ(x) ↓} = {⟨e, σ, x⟩ ∶ ∃s [JeKσs (x) ↓]}, so by (i) it is Σ1

and hence r.e.

 CHAPTER 2. RELATIVE COMPUTABILITY

Definition ... We define the use function to be u(A; e, x, s) = 1+ the maxi-
mum number used in the computation of JeKAs (x) if JeKAs (x) ↓, and u(A; e, x, s) =
0 otherwise. We say that u(A; e, x) = u(A; e, x, s) if there is an s such that
JeKAs (x) ↓, and write u(A; e, x) ↑ otherwise.

Theorem .. (Use Principle).

(i) JeKA(x) = y Ô⇒ ∃s ∃σ ⊂ A [JeKσs (x) = y]

(ii) JeKσs (x) = y Ô⇒ ∀t ≥ s ∀τ ⊇ σ [JeKτt (x) = y]

(iii) JeKσ(x) = y Ô⇒ ∀A ⊃ σ [JeKA(x) = y].

The proof of this principle follows largely from the Definitions .. and
.. and the fact that any computation that halts must do so after a finite
amount of steps. The Use Principle is important because it allows us to make
for example the following steps: If for some A, s, x, y we have that JeKA↾ys (x) ↓,
then by (iii)

JeKA(x) = JeKA↾y(x) = JeKA↾ys (x).

Or, if we have the use u = u(A; e, x) of some computation, then

JeKA↾u(x) = JeKA(x).

Definition ... A set A is r.e. in B if A is the domain of JeKB for some e.
A set A is ΣB

1 if x ∈ A ⇐⇒ ∃y R(x, y) where R is a B-recursive relation.

The theorems concerning p.r. functions and r.e. sets can be relativized to
work with these new notions. As an example, here the Smn Theorem and the
Normal Form Theorem for r.e. sets:

Theorem .. (Relativized Smn Theorem). For every m,n ≥ 1 there is an
injective recursive function Smn (e, y1, . . . , ym) such that for all e, y1, . . . , ym,
x1 . . . , xn and all sets A

JSmn (e, y1, . . . , ym)KA = JeKA(y1, . . . , ym, x1, . . . , xn).

Theorem .. (Relativized Normal Form Theorem for r.e. sets). A set A is
r.e. in B iff A ∈ ΣA

1 .

The proofs of these relativized theorems can be obtained from their original
proofs by replacing recursive with A-recursive, etc.

2.4 Turing Degrees and the Jump Operator

The intention behind the notation ψ ≤T A is to have ≤T as a notion of relative
complexity between sets.

2.4. TURING DEGREES AND THE JUMP OPERATOR 

Definition ... For sets A,B we write B ≤T A if χB ≤T A. We say that
the two sets are Turing equivalent if B ≤T A and A ≤T B, and write A ≡T B.

Theorem ... The relation ≤T is reflexive and transitive, so ≡T is an equiv-
alence relation.

Proof. Any set A can trivially be computed by a machine with A as an oracle,
so A ≤T A, and ≤T is reflexive. If A can be computed from B and B can be
computed from C, then A can be computed from C by first computing B and
then computing A—thus ≤T is transitive. Therefore, the relation ≡T is also
reflexive and transitive and it is trivially symmetric, hence it is an equivalence
relation.

If A ≡T B then we say that A and B codes the same information.

Theorem ... K ≡T K0.

Proof. K ≤T K0: Obvious, since x ∈K ⇐⇒ ϕx(x) ↓ ⇐⇒ ⟨x,x⟩ ∈K0.
K0 ≤T K: Since K0 is r.e., there is an e such that K0 =We. Now define the

p.r. function ψ(x, y) = ϕe(x), and obtain the total recursive function g from
the Smn Theorem which fulfills

ϕg(x)(y) = ψ(x, y).

Then
x ∈K0 ⇐⇒ ϕe(x) ↓ ⇐⇒ ϕg(x)(g(x)) ↓ ⇐⇒ g(x) ∈K.

Actually, the second part of the above proof shows that K is r.e.-complete,
by which we mean that W ≤T K for any r.e. set W , and thus these sets are
the largest r.e. sets with respect to ≤T .

Definition ... The Turing degree of a set A is the equivalence class

deg(A) = {B ∶ B ≡T A}.

Turing degrees will be written as lowercase boldface letters a,b,c. If A ≤T B
for some A ∈ a and B ∈ b, then we say a ≤ b. We say a < b if a ≤ b and a /= b.

A degree a is r.e. if it contains an r.e. set, and it is r.e. in b if it contains
some set A which is r.e. in some set B ∈ b.

Intuitively, a < b means that membership of sets of degree b is harder to
compute than membership of sets of degree a.

Since there for any recursive function f must be an e such that f = JeK =
JeK∅, then all recursive sets are of degree 0 =def deg(∅)—this is the smallest
Turing degree.

The Turing degree deg(K) is r.e., and since no r.e. set codes more informa-
tion than K, it is the largest r.e. degree. By re-using the method used to define
K as a non-recursive set, we will define the relativized version: The jump set.

 CHAPTER 2. RELATIVE COMPUTABILITY

Definition ... The jump of a set A is defined as

A′ =KA = {x ∶ JxKA(x) ↓},

and the n’th jump of A is obtained by iterating the jump n times, i.e., A(0) =
A,A(n+1) = (A(n))′.

This jump operator has some crucial properties, which are summarized in
the following theorem.

Theorem .. (The Jump Theorem). (i) A′ is r.e. in A.

(ii) A′/≤TA.

(iii) If A is r.e. in B and B ≤T C then A is r.e. in C.

(iv) If A ≡T B then A′ ≡T B′.

(v) A is r.e. in B iff A is r.e. in B.

The proof can be found in p.  of []. By (iv), we can speak of jumps
on degrees, and we will write a′ = deg(A′) for A ∈ a.

We define an infinite hierarchy of degrees,

0 < 0′ < 0′′ < ⋅ ⋅ ⋅ < 0(n) < . . . ,

by 0(n) = deg(∅(n)). We call it the Turing hierarchy.
In p.  of [] Post raises the question of whether there are any unsolvable

(i.e., greater than 0) r.e. degrees strictly below 0′, a question he himself were
unable to answer. This question is known as Post’s problem. In [] Kleene
and Post constructs a pair of incomparable degrees below 0′, but they cannot
prove that they are r.e. In Chapter  we will solve Post’s problem with two
different proofs.

2.5 The Arithmetical Hierarchy

In the last section we defined a hierarchy of degrees based on Turing reducibil-
ity and the jump operator. We will now define a hierarchy of sets, based on
the quantifier complexity of the syntactic definition of the sets. It is a general-
ization of the earlier definition of Σ1 sets.

Definition ... We define the arithmetical hierarchy to be the classes
Σn,Πn,∆n for all n given by the following.

• The set A is in Σ0 and Π0 iff A is recursive.

2.5. THE ARITHMETICAL HIERARCHY 

• For n ≥ 1, A ∈ Σn iff there is a recursive relation R(x, y1, . . . , yn) such
that

x ∈ A ⇐⇒ ∃y1 ∀y2 ∃y3 . . .Qyn R(x, y1, . . . , yn),

where Q represents ∀ if n is even, and ∃ otherwise.

• For n ≥ 1, A ∈ Πn iff there is a recursive relation R(x, y1, . . . , yn) such
that

x ∈ A ⇐⇒ ∀y1 ∃y2 ∀y3 . . .Qyn R(x, y1, . . . , yn),

where Q represents ∃ if n is even, and ∀ otherwise.

• The set A is in ∆n iff A ∈ Σn ∩Πn.

• We call a set A arithmetical if A ∈ ⋃n(Σn ∪Πn).

If we are given a definition of a set including more than one adjacent
quantifiers of the same kind, they can be collapsed into a single quantifier, in
the same way as remarked after Definition ..—which is only a special case
of this definition.

We use the following abbreviations

∀xRy Φ =def ∀x [xRy Ô⇒ Φ]
∃xRy Φ =def ∃x [xRy ∧Φ],

where R is one of <,≤,>,≥. If R is < or ≤, we call the quantifier a bounded
quantifier, and as we will see, these can be ignored when determining the
quantifier complexity of a set. By applying the usual rules of quantifier ma-
nipulation, we can prove some facts about arithmetical sets, which are useful
when determining if a concrete set is Σn or Πn.

Theorem ... (i) A ∈ Σn ⇐⇒ A ∈ Πn,

(ii) A ∈ Σn ∪Πn Ô⇒ ∀m > n [A ∈ ∆m],

(iii) A,B ∈ Σn Ô⇒ A ∪B,A ∩B ∈ Σn,

(iv) A,B ∈ Πn Ô⇒ A ∪B,A ∩B ∈ Πn,

(v) If R ∈ Σn, then the sets A,B ∈ Σn where

⟨x, y⟩ ∈ A ⇐⇒ ∀z < y R(x, y, z)

and
⟨x, y⟩ ∈ B ⇐⇒ ∃z < y R(x, y, z).

If instead R ∈ Πn, then A,B ∈ Πn would hold.

 CHAPTER 2. RELATIVE COMPUTABILITY

Proof. (i) If
x ∈ A ⇐⇒ ∃y1 ∀y2 . . .Qyn R(x, y1, . . . , yn)

then

x ∈ A ⇐⇒ x /∈ A ⇐⇒ ∀y1 ∃y2 . . .Qyn ¬R(x, y1, . . . , yn),

where Q denotes ∀ if Q is ∃, and ∃ otherwise. Since the negation of a
recursive relation is clearly also recursive, then A ∈ Πn.

(ii) By induction. Consider the case where A ∈ Σn, for n even, so

x ∈ A ⇐⇒ ∃y1 ∀y2 . . .∀yn R(x, y1, . . . , yn).

then

x ∈ A ⇐⇒ ∃y1 ∀y2 . . .∀yn ∃yn+1 [R(x, y1, . . . , yn) ∧ yn+1 = yn+1]

and

x ∈ A ⇐⇒ ∀y1 ∃y2 . . .∃yn ∀yn+1 [y1 = y1 ∧R(x, y2, . . . , yn+1)],

so A ∈ Σn+1 ∩Πn+1.

(iii) Let A,B ∈ Σn, so

x ∈ A ⇐⇒ ∃y1 ∀y2 . . .Qyn R(x, y1, . . . , yn)
x ∈ B ⇐⇒ ∃z1 ∀z2 . . .Qzn S(x, z1, . . . , zn)

and thus

x ∈ A ∪B ⇐⇒ [∃y1 ∀y2 . . .Qyn R(x, y1, . . . , yn)]
∨ [∃z1 ∀z2 . . .Qzn S(x, z1, . . . , zn)]

⇐⇒ ∃y1 ∃z1 ∀y2∀z2 . . .Qyn Qzn [R(x, y1, . . . , yn)
∨ S(x, z1, . . . , zn)]

⇐⇒ ∃u1 ∀u2 . . .Qun [R(x, (u1)1, . . . , (un)1)
∨ S(x, (u1)2, . . . , (un)2)],

where ui is an encoding of yi, zi, so A ∪B ∈ Σn. It is shown similarly for
A ∩B.

(iv) The same as the proof of (iii) but with all quantifiers flipped.

(v) If R ∈ Σn, then B ∈ Σn, since the ∃-quantifier can be collapsed with the
first ∃ in the definition of R. We will prove A ∈ Σn by induction over n.

2.5. THE ARITHMETICAL HIERARCHY 

If n = 0 then A is clearly recursive. Fix n > 0 and assume it holds for
m < n. Now there exists S ∈ Πn−1 such that

⟨x, y⟩ ∈ A ⇐⇒ ∀z < y R(x, y, z)
⇐⇒ ∀z < y ∃u S(x, y, z, u).

If ⟨x, y⟩ ∈ A, then let for each z < y, uz denote the number which fulfills
S(x, y, z, uz), and encode u0, . . . , uz into a single integer v. Thus

∀z < y ∃u S(x, y, z, u) ⇐⇒ ∃v ∀z < y S(x, y, z, (v)z),

and by the induction hypothesis the relation ∀z < y S is Πn−1, so A must
be Σn. The case where R ∈ Πn follows from (i).

We now have two different notions of classifications of sets, the Turing
degrees, and the arithmetical sets. The following theorem establishes the con-
nection between these two.

Theorem .. (Post’s Theorem). For every n ≥ 0

(i) A ∈ Σn+1 ⇐⇒ A is r.e. in some Πn set ⇐⇒ A is r.e. in some Σn set,

(ii) A ∈ Σn Ô⇒ A ≤T ∅(n),

(iii) A ∈ Σn+1 ⇐⇒ A is r.e. in ∅(n),

(iv) A ∈ ∆n+1 ⇐⇒ A ≤T ∅(n),

(v) ∅(n) ∈ Σn ∖Πn, for n > 0.

Proof. (i) Let A ∈ Σn+1. Then x ∈ A ⇐⇒ ∃y R(x, y) for some R ∈ Πn, so
A ∈ ΣR

1 and hence by the relativized Normal Form Theorem for r.e. sets,
A is r.e. in R.

Next, let A be r.e. in some Πn set B. Thus there is an e such that

x ∈ A ⇐⇒ JeKB(x) ↓
⇐⇒ ∃s ∃σ [σ ⊂ B ∧ JeKσs (x) ↓].

From the Master Enumeration Theorem it follows, that JeKσs ↓ is recursive,
so if we can show that σ ⊂ B is Σn+1, then by quantifier contraction B is
also Σn+1. But

σ ⊂ B ⇐⇒ ∀y < lh(σ) [σ(y) = χB(y)]
⇐⇒ ∀y < lh(σ) [[σ(y) = 1 ∧ y ∈ B] ∨ [σ(y) = 0 ∧ y /∈ B]],

and the first part of this disjunction is Πn, the second is Σn because B ∈
Πn, thus σ ⊂ B must be Σn+1. This proves the first bi-implication—the
second follows from (v) in the Jump Theorem.

 CHAPTER 2. RELATIVE COMPUTABILITY

(ii) By induction on n. For n = 0 it is clear. Now fix n > 0, and assume it
to hold for n. Let A ∈ Σn+1. Then by (i), A is r.e. in some B ∈ Σn. By
the induction hypothesis B ≤T ∅(n), so B is r.e. in ∅(n) by (iii) of the
Jump Theorem. Thus there is an e such that x ∈ A ⇐⇒ JeK∅

(n)(x) ↓.
Define the ∅(n)-recursive function ψ(x, y) = JeK∅

(n)(x), and obtain with
the relativized Smn Theorem an injective and recursive g such that

Jg(x)K∅(n)(y) = ψ(x, y),

for then

x ∈ A ⇐⇒ JeK∅
(n)(x) ↓

⇐⇒ Jg(x)K∅(n)(g(x)) ↓

⇐⇒ g(x) ∈K∅(n) = ∅(n+1)

and hence the characteristic function of A can be computed with an
∅(n+1) oracle machine. Notice the similarity to the proof of Theorem
...

(iii) Follows from (iii) of Jump Theorem and (ii).

(iv)

A ∈ ∆n+1 ⇐⇒ A,A ∈ Σn+1

⇐⇒ A,A are r.e. in ∅(n) (by (iii))

⇐⇒ A ≤T ∅(n),

by the relativized version of the Complementation Theorem.

(v) We show ∅(n) ∈ Σn by induction. If n = 1 then ∅′ = K ∈ Σ1. Assume
∅(n) ∈ Σn for n ≥ 1. By (i) of the Jump Theorem, we know that ∅(n+1)

is r.e. in ∅(n), so by (i) ∅(n+1) ∈ Σn+1. Hence ∅(n) ∈ Σn for all n ≥ 1.
Assume that for some n, ∅(n) ∈ Πn, thus ∅(n) ∈ ∆n. By (iv) we get the
contradiction ∅(n) ≤T ∅(n−1), and therefore ∅(n) ∈ Σn ∖Πn.

From this theorem it follows that the hierarchy is non-trivial—it does not
collapse, as stated by the following corollary which follows directly from (v):

Corollary .. (Hierarchy Theorem). For any n > 0, ∆n ⊂ Σn and ∆n ⊂ Πn.

We will consider some examples of naturally occurring sets, and try to
place them in our hierarchies.

Theorem ... (i) Fin = {x ∶ Wx is finite} ∈ Σ2,

2.6. THE LIMIT LEMMA 

(ii) Tot = {x ∶ ϕx is total} ∈ Π2,

(iii) Rec = {x ∶ Wx is recursive} ∈ Σ3.

Proof. (i)
Wx is finite ⇐⇒ ∃s ∀t [t ≤ s ∨Wx,s =Wx,t].

The relation in the brackets is recursive, so Fin ∈ Σ2.

(ii)
ϕx is total ⇐⇒ Wx = ω ⇐⇒ ∀y ∃s [y ∈Wx,s].

(iii)

Wx is recursive ⇐⇒ ∃y [Wx =W y]
⇐⇒ ∃y [Wx ∩Wy = ∅ ∧Wx ∪Wy = ω]
⇐⇒ ∃y [∀z ∀s (z /∈Wx,s ∧ z /∈Wy,s)

∧ ∀q ∃t (q ∈Wx,t ∨ q ∈Wy,t)]
⇐⇒ ∃y ∀z ∀s ∀q ∃t [(z /∈Wx,s

∧ z /∈Wy,s) ∧ (q ∈Wx,t ∨ q ∈Wy,t)].

These classifications are actually as sharp as possible, and

deg(Fin) = deg(Tot) = 0′′

deg(Rec) = 0′′′.

This is proved on page  of [].

2.6 The Limit Lemma

In this section we will provide a characterization of the degrees below 0′. We
will later use this characterization in one of our solutions to Post’s problem.

Definition ... A sequence of functions {fs}s∈ω converges to f if for all x
there exists a t such that fs(x) = f(x) for all s ≥ t. We write this as lims fs = f .
We say the sequence is recursive if there is some recursive function f̂(x, s)
such that f̂(x, s) = fs(x) for all x, s. Likewise we define it to be A-recursive if
f̂(x, s) = fs(x) is A-recursive.

A modulus for a converging sequence {fs}s∈ω is a function m(x) such that
s ≥m(x) Ô⇒ fs(x) = f(x) for all s, x.

These moduli and how they relate to f are of interest when we are exam-
ining r.e. sets.

 CHAPTER 2. RELATIVE COMPUTABILITY

Lemma .. (Modulus Lemma). Let A be r.e., and let f be a function such
that f ≤T A. There is a recursive sequence {fs}s∈ω converging to f , and a
modulus m of {fs}s∈ω such that m ≤T A.

Proof. Find an index e for f such that f = JeKA, and an index i for A such
that A =Wi. Let As =Wi,s. Define

fs(x) =
⎧⎪⎪⎨⎪⎪⎩

JeKAs
s (x) if JeKAs

s (x) ↓,
0 otherwise.

and
m(x) = µs ∃z ≤ s [JeKAs↾z

s (x) ↓ ∧ As ↾ z = A ↾ z].
The function f̂(x, s) = fs(x) must then be recursive, so it is a recursive se-
quence.

We now examine the definition of m; the relation As ↾ z = A ↾ z must
be recursive in A, the relation JeKAs↾z

s (x) ↓ is recursive, and the quantifier is
bounded, hence m ≤T A. Let now x, s be given such that s ≥ m(x). Then we
have a z such that As ↾ z = A ↾ z and JeKAs↾z

s (x) ↓, so

JeKAs↾z
s (x) = JeKA↾zs (x) = JeKA(x) = f(x)

by the Use Principle, and therefore m is a modulus.

Now we can prove the Limit Lemma, which provides a characterization of
the degrees below 0′.

Lemma .. (Limit Lemma). For a function f , f ≤T ∅′ iff there is a recur-
sive sequence {fs}s∈ω converging to f .

Proof. Assume f ≤T ∅′. Since ∅′ is r.e., the Modulus Lemma ensures the
existence of a recursive sequence {fs}s∈ω converging to f .

Assume f = lims fs, where {fs}s∈ω is a recursive sequence with f̂(x, s) =
fs(x). Define the set A by

⟨s, x⟩ ∈ A ⇐⇒ ∃t ≥ s [f̂(x, t) /= f̂(x, t + 1)].

Since f̂ is recursive, then A must be Σ1, and thus A ≤T ∅′. Next, define

m(x) = µs [⟨s, x⟩ /∈ A],

which is A-recursive, and the least modulus for {fs}s∈ω, since

⟨s, x⟩ /∈ A ⇐⇒ ∀t ≥ s [f̂(x, t) = f̂(x, t + 1)]
⇐⇒ ∀t ≥ s [ft(x) = ft+1(x)]
⇐⇒ ∀t ≥ s [ft(x) = f(x)].

Since f(x) = fm(x)(x) can be computed with m and m ≤T A, then

f ≤T A ≤T ∅′.

2.6. THE LIMIT LEMMA 

By combining these lemmas, we can characterize the r.e. degrees below 0′.

Corollary ... A set A has r.e. degree iff there is a recursive sequence
{fs}s∈ω converging to χA with a modulus m ≤T A.

Proof. If A has r.e. degree, apply the Modulus Lemma to obtain {fs}s∈ω and
m ≤T A.

Assume χA = lims fs with modulus m ≤T A. As in the proof of the Limit
Lemma, define B by

⟨s, x⟩ ∈ B ⇐⇒ ∃t ≥ s [ft(x) /= ft+1(x)],

and recall that A ≤T B and that B is r.e. Observe that we can compute B by
using m, so since m ≤T A, then B ≤T A. Thus deg(A) = deg(B).

Chapter 3

Finite Injury Priority Method

In this chapter, Post’s problem will be solved. It was originally solved by R.M.
Friedberg in  [], and independently by A.A. Muchnik (or Mučnik) in 
[], and both invented the same new technique which is today known as the
finite injury priority method. It is a sophisticated construction method, where
some sets are built, step by step, in a way where they are highly dependent
on each other. As the construction advances, the sets will eventually injure
each other—but as we will see (and as the title suggests), it will only happen
a finite amount of times at each step, and so our construction will eventually
succeed.

Since its discovery, this technique has been refined, and there exists a much
more powerful variant of it called infinite injury, which will not be treated here.

We will provide two different solutions to Post’s problem. Firstly the orig-
inal Friedberg-Muchnik solution, and then a newer solution which is a bit
easier. Friedberg-Muchniks theorem states the existence of two r.e. sets A and
B, which are ≤T -incomparable, and thus 0 < deg(A) < 0′ and 0 < deg(B) < 0′,
since if, say, A ≡T ∅′ then B ≤T A and if B ≡T ∅ then A ≤T B. The other solu-
tion finds only one r.e. set A, but this is low, i.e., A′ ≡T K, and non-recursive,
so 0 < deg(A) < 0′.

These versions of the proofs are primarily based on S. Lempp’s lecture
notes [], and his approach with strategy trees, but they should be somewhat
more rigorous.

3.1 The Friedberg-Muchnik Theorem

Theorem .. (The Friedberg-Muchnik Theorem). There exists r.e. sets A
and B such that A/≤TB and B/≤TA.

Proof. We will construct sets A and B that are r.e. and satisfy the require-



 CHAPTER 3. FINITE INJURY PRIORITY METHOD

ments

RAe ∶ χA /= JeKB

RBe ∶ χB /= JeKA

for all e, for this will ensure that neither A ≤T B nor B ≤T A.
We will build the sets recursively in ω stages, and at each stage s create

approximating finite sets As and Bs, such that

A0 ⊆ A1 ⊆ A2 ⊆ . . . ,
B0 ⊆ B1 ⊆ B2 ⊆

Since this construction will be an effective procedure, A = ⋃sAs and B = ⋃sBs
will be r.e. by the Listing Theorem.

For technical reasons we will order the requirements linearly, so we assign
each even number to a requirement of the first type, and each odd number to
a requirement of the second type, namely we say R2e = RAe and R2e+1 = RBe .
We say Ri is of higher priority than Re if i < e.

We will fulfill the requirements by finding witnesses to them. A witness x
for, say, R2e shall fulfill that either χA(x) = 0 and JeKB(x) /= 0 or χA(x) = 1
and JeKB(x) = 0.

The construction will then roughly proceed in the following way. At stage
s+1 of the construction, we find the highest priority requirement which requires
attention, i.e., the least i such that (assume that i = 2e and x2e is the potential
witness for R2e chosen at a previous stage)

χAs(x2e) = JeKBs
s+1(x2e).

Action is then taken for this requirement. This consists of finding a new unused
potential witness x2e, not restrained by any higher priority requirement, on
which it is desired to obtain

χA(x2e) /= JeKB(x2e),

and keep it out of A. Then we wait for a stage s0 where JeKBs0
s0 (x2e) = 0, and

if such a stage is found, we enumerate x2e into A, and restrain any number
smaller than u(Bs0 ; e, x2e, s0) from entering B at a later stage.

A higher priority requirement R2j+1 can later injure R2e by enumerating
numbers into B which are smaller than this restraint, and thus can effect the
computation. But each requirement will only act finitely often after it is not
injured anymore, and thus by induction all the requirements will eventually be
met.

We systematize this construction in the following way. We will make strate-
gies to fulfill each requirement, and each strategy will depend on the outcomes
of all strategies for higher priority requirements. The strategies can be seen as
effective procedures executed step by step, which can always remember where
they left of. There will always be one strategy which is eligible to act, and it
will act according to where it left off in the following description.

3.1. THE FRIEDBERG-MUCHNIK THEOREM 

Strategy for fulfilling R2e:

() Let r = max2i+1≤2e{r2i+1} be the maximum restraint for A given by the
higher order priorities. Choose a witness x2e to be the least element in
{⟨y,2e⟩ ∶ y ∈ ω} which is greater than r, and which is not already in As.
Let r2e = −1.

() Wait until
JeKBs

s (x) = 0.

() Let r2e = u(Bs; e, x, s), and stop.

Strategy for fulfilling R2e+1: The same as the above, switching A and B
and replacing 2e with 2e + 1.

When a strategy at some stage has acted, then it will always have one of the
following current outcomes:

o1: We are waiting at (), so we wish that the potential witness should not
be in the set.

o2: We have stopped at (), so we wish that the potential witness shall be
enumerated into the set.

We define the set of strings T = {o1, o2}<ω and call it the Tree of Strategies. A
string α ∈ T with the length i represents a strategy for fulfilling Ri, and if this
strategy is eligible to act and has current outcome o, then the next strategy
eligible to act will be αˆ⟨o⟩.

The reason for calling T a tree, is that it can be visualized as the following
graph:

R0

R1

R2

R3

⋮

r0, x0

r1, x1

r2, x2

r3, x3

⋮

o1 o2

o1

o1 o2

o2

o1

o1 o2

o1

o1 o2

o2

o2

Each level of nodes represents all the strategies for fulfilling one requirement,
and each of these levels have a restraint and a potential witness, which the
strategies will alter.

 CHAPTER 3. FINITE INJURY PRIORITY METHOD

Construction of A and B: At stage s = 0, we let the current path of the
construction be γ0 = ∅ ∈ T and define χA0(x) = χB0(x) = 0 for all x.

At stage s+1 we will go through substages i from 0 to s+1. At substage i,
a strategy α ∈ T of length i is eligible to act. If α has not acted before, then it
starts at (), and if it has acted before, then either it continues from () or it
has stopped at (). Either way it will have an outcome, call this o. The next
strategy eligible to act will be αˆ⟨o⟩.

Denote by γs+1 ∈ T the last strategy eligible to act at this stage, i.e., the
current path of the construction. We define As+1 and Bs+1 in the following
way:

Let χAs+1(x) = 1 if there exists a 2e = i ≤ s + 1 such that x = x2e and
γs+1(2e) = o2, and = χAs(x) otherwise; let χBs+1(x) = 1 if there exists an
2e + 1 = i ≤ s + 1 such that x = x2e+1 and γs+1(2e + 1) = o2, and = χBs(x)
otherwise. Thus As+1 and Bs+1 have been constructed recursively. We define
the sets A = ⋃sAs and B = ⋃sBs, which are r.e. since each As and Bs is finite.

We see that the paths of construction γs will converge to an infinite path
γ ∈ {o1, o2}ω, because the outcome of each strategy α ∈ γs will eventually reach
a limit—for either the outcome is o1 for all stages, or it becomes o2 at some
stage, at which point it will not be able to change back to o1 again (in the
visualization of the tree, the current path of construction will only be able
to move right, so every requirement Ri can at most be injured 2i − 1 times).
Hence, we can for every requirement Ri find a strategy α ∈ T with length i
such that α ⊂ γ, i.e., there is an s0 such that α ⊆ γs for all s ≥ s0.

Lemma. Every strategy α ⊂ γ ensures the satisfaction of its requirement, and
thus A/≤TB and B/≤TA.

Fix s0 ≥ lh(α) least such that α ⊆ γs for all s ≥ s0. Thus at stage s0, α
picks xlh(α) as a witness. Assume that lh(α) = 2e, the proof will be analogous
for lh(α) = 2e + 1.

Case : The outcome of α is o1 for all stages s ≥ s0. Then x2e will never be
put into As (it can never be chosen as potential witness for any other
requirement, since it was specifically chosen from the set {⟨y,2e⟩ ∶ y ∈
ω}), and JeKBs

s (x2e) /= 0 for all s, so JeKB(x2e) /= 0. Thus R2e is
satisfied.

Case : For some stage s1, the outcome of α is o2 for all stages s ≥ s1. Then
x2e is enumerated into As1 , and so

JeKBs1
s1 (x2e) = 0 /= 1 = χAs1

(x).

It remains to be shown, that no other strategy β will ever enumerate
any number smaller than u(Bs1 ; e, x2e), s1) = r2e into B after substage
t = lh(α) of stage s1, for then Bs1 ↾ r2e = B ↾ r2e, and thus by the Use

3.2. A LOW, NON-RECURSIVE R.E. DEGREE 

Principle
JeKBs1

s1 (x2e) = JeKB(x2e) = 0.

If β ⊂ α, it holds, for β cannot change its outcome after substage t of
s1 as β ⊂ αˆ⟨o2⟩ ⊆ γs for all s ≥ s1.
If β = α it obviously holds; α can only enumerate into A, not B.

If β ⊇ αˆ⟨o2⟩ it holds, because β must choose its witness after α, and
thus it must be greater than r2e.

For β /⊆ α and β /⊇ α it also holds, because β will never be eligible to
act after substage t of s1.

3.2 A Low, Non-Recursive r.e. Degree

Definition ... A set A is low if A ≤T ∅′ and deg(A)′ = 0′. The recursive
degree 0 contains the trivial low sets.

Theorem ... There exists a non-trivial low r.e. set.

Proof. We will construct A and a recursive function Γ such that for all e the
following requirements are fulfilled:

R2e = Ne ∶ χA′(e) = lims Γ(e, s)
R2e+1 = Pe ∶ χA /= JeK.

The negative requirements Ne ensures by the Limit Lemma that A′ ≤T ∅′
(lowness), and the positive requirements Pe ensures that A is non-recursive.

Strategy for fulfilling Ne:

() Let re = −1, and set Γ(e, t) = 0 for all t.

() Wait until
JeKAs

s (e) ↓ .

() Let Γ(e, t) = 1 for each t ≥ s, and set re = u(As; e, x, s).

Strategy for fulfilling Pe:

() Let r = maxi≤e{ri} be the maximum restraint. Choose a witness xe to be
the least element in {⟨y, e⟩ ∶ y ∈ ω} which is greater than r, and which is
not already in As.

() Wait until
JeKs(x) = 0.

() Stop.

 CHAPTER 3. FINITE INJURY PRIORITY METHOD

Each strategy will have one of the following current outcomes:

o1: We wait at ().

o2: We have stopped at ().

Let T = {o1, o2}<ω be the Tree of Strategies, where a string α ∈ T of length e
represents a strategy for fulfilling requirement Re.

N0

P0

N1

P1

⋮

r0

x0

r1

x1

⋮

o1 o2

o1

o1 o2

o2

o1

o1 o2

o1

o1 o2

o2

o2

Construction of A: At stage s = 0, we let the current path of construction
γ0 = ∅, and define χAs(x) = 0 for all x.

At stage s + 1, we will go through substages i from 0 to s + 1. At each i,
a strategy α ∈ T of length i is eligible to act. If α has not acted before, then
it will start from (), and if it has acted before it will either check if it is still
waiting at () or simply be stopped at stage (). Either way it will have an
outcome, call this o. The next strategy eligible to act is then αˆ⟨o⟩. Denote
by γs+1 ∈ T the last strategy eligible to act at this stage, i.e., the current path
of the construction. Define χAs+1(x) = 1 if there exists an e such that x = xe
and γs(2e) = o2, and = χAs(x) otherwise, and thus we have constructed As+1

recursively. We define our set to be A = ⋃sAs, so since all As are finite, then
A will be r.e.

Now we see that γs converges to some γ ∈ {o1, o2}ω, since each strategy will
either have outcome o1 forever, or outcome o2 forever from some point on (the
path can only move to the right in the tree). So we can for each requirement
Ri find a strategy α ∈ T of length i such that α ⊂ γ, i.e., so there is an s0 such
that α ⊆ γs for all s ≥ s0.

Note that it is when we try to fulfill Pe that we can find new elements to
put into A, and it is when we try to fulfill Ne that we block certain elements
from entering A, hence they are called positive and negative requirements,
respectively.

Lemma. Every strategy α ⊂ γ ensures the satisfaction of its requirement, thus
A is low and non-recursive.

3.2. A LOW, NON-RECURSIVE R.E. DEGREE 

Fix s0 ≥ lh(α) least such that α ⊆ γs for all s ≥ s0, i.e., the first stage at
which α is eligible to act.

Case : The length of α is 2e, so it is an Ne-strategy: After step s0, α will
define Γ(e, t) for all t. If α has outcome o1 for all stages s ≥ s0, then
it waits at () and so JeKA(e) ↑ and thus e /∈ A′, but Γ(e, s) = 0. If α
has outcome o2 from some stage s1 ≥ s0, then Γ(e, t) = 1 for all t ≥ s1,
and since re ensures that As1 ↾ re = A ↾ re, then by the Use Principle

JeKAs
s (e) = JeKAs↾re

s (e) = JeKA↾re(e) = JeKA(e)

and so e ∈ A′.

In either case, A′(e) = lims Γ(e, s).

Case : The length of α is 2e + 1, so it is a Pe-strategy: At stage s0, α picks
xe as a witness. If it has outcome o1 for all stages s ≥ s0 then it will
never be put into A (it can never be chosen by a strategy for any other
requirement, since it is specifically chosen from the set {⟨y, e⟩ ∶ y ∈
ω}), but then χAs(xe) = 0 and JeKs(xe) /= 0 for all s ≥ s0, and thus
χA(xe) /= JeK(xe). If α has outcome o2 some stage s1 ≥ s0, then it will
have this outcome for all s ≥ s1. Then χAs(xe) = 1 /= 0 = JeKs(xe) for
all s ≥ s1, hence χA(xe) /= JeK(xe).

Bibliography

[] R.M. Friedberg, Two Recursively Enumerable Sets of Incomparable De-
grees of Unsolvability (Solution of Post’s Problem, ), Proceedings of
the National Academy of Sciences of the United States of America 
(), no. , pp. –.

[] S. C. Kleene, On notation for ordinal numbers, The Journal of Symbolic
Logic  (), no. , pp. –.

[] , Introduction to Metamathematics, North-Holland, .

[] S. C. Kleene and Emil L. Post, The upper semi-lattice of degrees of re-
cursive unsolvability, The Annals of Mathematics  (), no. , pp.
–.

[] S. Lempp, Priority Arguments in Computability Theory, Model The-
ory, and Complexity Theory, manuscript, available at http://www.math.
wisc.edu/~lempp/papers/prio.pdf (accessed . May ).

[] A.A. Muchnik, On the unsolvability of the problem of reducibility in the
theory of algorithms, Dokl. Akad. Nauk SSSR, NS (Russian)  (),
–.

[] E.L. Post, Recursively enumerable sets of positive integers and their deci-
sion problems, Bull. Am. Math. Soc.  (), –.

[] H.G. Rice, Classes of recursively enumerable sets and their decision prob-
lems, Transactions of the American Mathematical Society  (),
no. , pp. –.

[] J.R. Shoenfield, Mathematical Logic, Addison Wesley, .

[] R.I. Soare, Recursively Enumerable Sets and Degrees: A Study of
Computable Functions and Computably Generated Sets, Springer-Verlag,
Berlin, .

[] , Computability and recursion, The Bulletin of Symbolic Logic 
(), no. , –.



 BIBLIOGRAPHY

[] A.M. Turing, On computable numbers, with an application to the Entschei-
dungsproblem., Proceedings of the London Mathematical Society 
(), no. , –.

[] , Systems of logic based on ordinals, Proceedings of the London
Mathematical Society  (), no. , .

