
Programming with Classical Proofs

MSc Thesis (Afstudeerscriptie)

written by

Hans Bugge Grathwohl
(born January 10th 1989 in Frederiksberg, Denmark)

under the supervision of prof. dr. Herman Geuvers and dr. Inge
Bethke, and submitted to the Board of Examiners in partial fulfillment of

the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 27th 2013 dr. Maria Aloni

prof. dr. Herman Geuvers
dr. Inge Bethke
prof. dr. Dick de Jongh
dr. Piet Rodenburg
dr. Benno van den Berg

i

Abstract

This thesis is about extracting programs from classical proofs. In
the first part, we show conservativity of Peano arithmetic over Heyting
arithmetic for ⇧0

2-sentences, an old result of Kreisel, using Friedman’s
A-translation technique. Then we present some extensions by Parigot and
Krebbers of the lambda-calculus with control mechanisms, that allow for
some amount of classical reasoning via the Curry–Howard correspondence.

In the second part of the thesis, we present a new system by Aschieri
and Berardi, HA+ EM1, a Curry–Howard system for an arithmetic with
a limited amount of classical reasoning that is based on ideas from their
Interactive Realizability semantics for classical arithmetic. We show
Aschieri’s recent proof of strong normalization of HA+ EM1 that uses a
new technique based on non-deterministic choice.

Two non-trivial examples of proof terms in HA+EM1 are then worked
out, and their possible reduction paths are analyzed. On basis of this, an
operational natural semantics for HA+ EM1 is developed and tested on
the previous examples.

iii

Acknowledgements

I would like to thank my supervisor Herman Geuvers for introducing
me to the area of classical program extraction, and for a lot of good, fruitful
meetings in Nijmegen. Furthermore, I would like to thank Inge Bethke
for being willing to take up the job as my local supervisor.

I am grateful to my brother Bjørn, the computer scientist, who has
carefully read my drafts and provided valuable comments and corrections.

I would also like to thank my fellow students at the ILLC, who has
proved excellent company in my years in Amsterdam, and furthermore
have taught me most of the logic I know. Outside logic, a special thanks
goes to Roos Holleman for great times, and for invaluable support during
the final stages of my writing.

Contents

1 Introduction 1
1.1 Related work . 2
1.2 Outline . 3
1.3 Notation . 4

2 Preliminaries 5
2.1 Natural deduction . 5
2.2 First-order logic . 6
2.3 The untyped lambda calculus 9
2.4 Simply typed lambda calculus 11
2.5 Gödel’s System T . 13
2.6 Annotated first-order proofs . 16

3 Friedman’s A-translation 19
3.1 The arithmetics PA and HA . 19
3.2 Double-negation translation . 20
3.3 A-translation . 22
3.4 The proof . 24

4 Control operators 27
4.1 The system �µ . 28
4.2 The system �µT . 31

5 Arithmetic with exceptions: HA+ EM
1

35
5.1 Post rules . 35
5.2 HA . 37
5.3 HA+ EM

1

. 41
5.4 The system HA+ EM⇤

1

. 45
5.5 Strong normalization for HA+ EM⇤

1

and HA+ EM
1

. 47
5.6 Existential witness property . 54

6 Programming with terms in HA+ EM
1

55
6.1 Searching . 55
6.2 Multiplication example . 61

v

vi CONTENTS

7 Program extraction from HA+ EM
1

67
7.1 Natural semantics for HA+ EM

1

. 67
7.2 Searching . 70
7.3 Multiplication . 71

8 Conclusion 73
8.1 Further research . 73

Bibliography 77

Chapter 1

Introduction

A fundamental result about the theory of computer programming is Rice’s
theorem, which states that there is no e↵ective way of deciding whether
an algorithm computes a partial recursive function with a given non-trivial
property. A consequence of this is, that it is in general undecidable whether
a given program meets its specification. One approach to solve this problem
stems from a combination of two observations: Firstly, that there is a tight
connection between computer programs and proofs, this is what is commonly
known as the Curry–Howard correspondence, sometimes referred to as proofs-as-
programs and formulas-as-types. Secondly, the observation that it is decidable
whether a formal proof is correct. Thus, the idea is to make a mathematical
proof of a specification (which, of course, might be hard), and from this extract
a correct computer program. This is what is known as program extraction. It
is well established that this method works well when we consider intuitionistic
proof systems. Paulin-Mohring, e.g., in [32] presented a method to extract
correct programs from proofs in the Calculus of Construction, a higher order �-
calculus with dependent types [12]. In [29], Parigot discusses the practicalities
of the idea of programming with proofs, i.e., using formal mathematics as a
programming language.

This method needs the proofs to be constructive, in the sense that from a
proof of an existential statement, one can get a witness of this statement. All
proofs in intuitionistic logic are constructive, and indeed, for people working in
program extraction, attention was in the beginning restricted to intuitionistic
logics. Classical logics are not constructive in the same sense, and thus it does
not a priori seem to be possible to apply the same techniques here. However,
an old result about arithmetic states that any ⇧0

2

-sentence is provable in Peano
arithmetic if and only if it is provable in Heyting arithmetic. Thus, there is a
method to transform any classical proof of a specification in arithmetic, i.e., a
proof of 8↵9�.P (↵,�) where P (↵,�) is a basic formula, into an intuitionistic
proof of the same specification. This is evidence that all classical proofs of ⇧0

2

-
sentences have some computational content. ⇧0

2

-sentences are indeed arguably

1

2 CHAPTER 1. INTRODUCTION

the most important sentences in computer science, since a proof of one of these
corresponds to a proof of totality of a recursive function. This leads to the
area of classical program extraction.

There have been several approaches to extracting the computational content
of these classical proofs. It was discovered by Gri�n in 1989 [20] that inference
by contradiction corresponds to Felleisen’s control operator C [13], and hence
the Curry–Howard correspondence was extended to include classical reasoning.
This sparked a lot of research in this area. Several extensions of the �-calculus
with control operators have been proposed. To name a couple: Felleisen’s
�C with typing rules by Gri�n; Rehof and Sørensen’s �

�

[36] that extends
ordinary �-terms with a binder � which is typed by reductio ad absurdum; and
Parigot’s �µ [30], which we will return to in Chapter 4, along with Krebbers’s
�µT which extends �µ with natural numbers as a primitive datatype.

These systems correspond to classical propositional logic, which means that
their type systems are rather simple, and that, when they are equipped with
datatypes, they are more closely related to real world computer programming
languages than first-order systems are. But since we are interested in proofs
of statements of the form 8↵9�.'(↵,�), we need to consider systems that
correspond to first-order logic. For intuitionistic logic the standard system is
IQC, and when this is extended with the Peano axioms for arithmetic, we get
Heyting arithmetic, HA. In HA we do not need to add datatypes, since the
natural numbers are primitive in it. In this thesis we are mainly concerned
with an extension of HA with a limited amount of classical reasoning in the
form of EM

1

, the law of excluded middle restricted to ⌃0

1

-formulas. The system
HA+EM

1

that we present in Chapter 5 is a very recent system by Aschieri and
Berardi, and therefore it is not yet well studied. We work out some non-trivial
proofs in this system, and discuss how we can extract programs from these.

1.1 Related work

Berger, Buchholz, and Schwichtenberg [11] describe a method for extracting
programs from classical proofs, by way of extracting a term in Gödel’s System
T which contains all the computationally relevant parts of the proof. This is
in the style of the Gödel–Gentzen double negation translation, and indeed the
target language does not contain control mechanisms.

In [28], Makarov utilizes Felleisen’s C-operator to extract a program from
a classical proof of a non-trivial arithmetical proposition by adding extra
inference rules and defining a structural operational semantics for the classical
deduction system.

Herbelin has introduced the system IQC
MP

[21], which he characterizes as
an intuitionistic predicate logic with just enough classical reasoning to prove
Markov’s principle, which is the scheme that asserts that ¬¬'! ' whenever
' is 8-!-free.

1.2. OUTLINE 3

Krebbers extended Parigot’s �µ to contain a primitive datatype for the
natural numbers, in the style of Gödel’s System T, so as to come closer to
“real” programming languages, since these all have primitive datatypes. We will
present this system in Chapter 4. Furthermore, he has developed � :: catch,
which is an extension of Herbelin’s IQC

MP

-calculus with catch and throw [21],
this time with lists as a primitive datatype.

Aschieri and Berardi has developed interactive realizability [2,4,5,7], which
is a computational semantics for classical proofs that is based on the principle
of learning. Instead of following the method of Avigad [8], who characterizes his
classical realizability in terms of a special double-negation translation followed
by Friedman’s A-translation, followed by Kreisel’s modified realizability [26],
Aschieri avoids the use of a double-negation translation, and instead combines
modified realizability and Friedman’s translation. The learning aspect is
based on the idea that whenever we use an instance of excluded middle
8↵.'(↵)_9↵.¬'(↵) in a proof, the realizer starts by assuming that 8↵.'(↵) is
the case, and then whenever we use an instance '(n) in the proof, the realizer
checks to see if this is actually the case. The realizer then updates its state
with this new information (it learns). If '(n) is the case, then it continues
under the assumption that 8↵.'(↵) holds, and if not, it has found a witness
for 9↵.¬'(↵), thus this must hold, and the realizer continues in the part of
the proof that work under this assumption.

It is on the basis of interactive realizability that Aschieri and Berardi have
developed the classical Curry–Howard system HA + EM

1

[3, 6] that we will
investigate in this thesis.

1.2 Outline

In Chapter 2 we present some basic proof theory and lambda calculus, and we
introduce some type systems, namely the simply typed lambda calculus �!,
Gödel’s System T, and MQC, a calculus for minimal first-order logic.

In Chapter 3 we present a proof of Kreisel’s theorem that PA is a conserva-
tive extension of HA for ⇧0

2

-sentences, via the Gödel–Gentzen double-negation
translation and Friedman’s A-translation, which lays ground to most of the
methods employed in the area of classical program extraction.

In Chapter 4 we discuss how to introduce control mechanisms in the �-
calculus, and specifically we present the systems �µ by Parigot, and �µT by
Krebbers. These are examples of simple programming languages with control
mechanisms that correspond via Curry–Howard to classical logic.

In Chapter 5 we present a system HA, and expand this to Aschieri’s system
HA+ EM

1

. We prove strong normalization of HA+ EM
1

by a new method of
Aschieri [3] that uses non-deterministic choice.

In Chapter 6 we investigate how to use HA+EM
1

for program extraction via
analysis of two concrete examples. The first example is a proof of a specification

4 CHAPTER 1. INTRODUCTION

of a searching problem, and the second example is a multiplication program
which uses control to increase e�ciency.

In Chapter 7 we introduce a new operational semantics for HA+ EM
1

, and
test this on some examples from Chapter 6.

1.3 Notation

We use greek letters, ↵,�, �, . . . to refer to numeric variable, letters x, y, z, . . .
to refer to proof variables, and letters a, b, c, . . . to refer to variables that acts
as “addresses” for control mechanisms. For proof terms, we will mainly use
the letters u, v, w, . . . , and for numeric terms we will mostly use n,m,

When writing �-abstractions, we will often omit the annotated types, even
if we are working in Church-style. This saves space, and the types can be
deduced from the context.

For formulas ', we will often write '(↵), which means that we can substitute
↵ with n simply by writing '(n). It does not necessarily imply that ↵ is the
only free variable in '.

Natural deduction proof trees are defined with a turnstile and an environ-
ment, �, and `, but since this makes the, already bulky, trees look even more
voluminous, we will often discharge variables with superscripts instead:

⌧ ` ⌧
` ⌧ ! ⌧

versus ⌧x x⌧ ! ⌧ .

Chapter 2

Preliminaries

2.1 Natural deduction

We first define what a natural deduction system is in general.

Definition 2.1.1 (Natural deduction systems). Let L be a language. We
define a natural deduction system N .

1. An environment in natural deduction is a finite set of formulas of L,
usually written �.

2. A natural deduction judgment is a pair consisting of an environment and
a formula, written � ` '. We do not write set-brackets when we specify
the environment, thus we write ', ` ✓ instead of {', } ` ✓ and ` '
when the environment is empty.

3. An n-ary rule of inference consists of n+ 1 judgments (n premises and
one conclusion), and is written on the form

�
1

` '
1

�
2

` '
2

· · · �
n

` '
n

� ` '

A nullary inference rule is called an axiom. Di↵erent natural deduction
systems are distinguished by having di↵erent inference rules.

4. A proof (synonym: derivation) of a judgment � ` ' is a finite tree,
where:

• � ` ' is the root label,

• any label is obtained by its children’s labels by an application of
one of the natural deduction rules. If a label is obtained by an
application of a nullary rule (an axiom), then it is a leaf.

5

6 CHAPTER 2. PRELIMINARIES

In general, we will write � ` ' to mean that there is a derivation of the
judgment � ` '. As we will sometimes use multiple natural deduction
systems, it can be practical to annotate which system we are using, like
so: � `N '. Mostly, this will be clear from the context.

2.2 First-order logic

In order to formalize first-order logic, we start by defining a natural deduction
proof system for the so-called minimal first-order logic (mFOL). Minimal
logic, introduced in 1936 by Ingebrigt Johansson [23], is a simplified version
of intuitionistic logic where ex falso quodlibet does not hold. In fact, minimal
logic does not contain any rules about absurdity, and therefore ? does not
need to be in the language. Since negation is usually defined as ¬A := A ! ?,
we do not necessarily have negation in mFOL.

Firstly, we need to specify what language we work with.

Definition 2.2.1 (The language of first-order logic). Given a signature S
consisting of functional symbols and relational symbols together with their
arity, we define the first-order language LS :

• Let V be a set of distinct variable names ↵,�, �, . . .

• We define the terms of LS as the least set T such that

– V ✓ T ;

– If t
1

, . . . , t
n

2 T , then f(t
1

, . . . , t
n

) 2 T where f is an n-ary func-
tional symbol from S.

A term is closed if it contains no variables. The closed terms are supposed
to represent the objects in the domain of discourse.

• We define the formulas of LS as the least set F such that

– P (t
1

, . . . , t
n

) 2 F where P is an n-ary relation symbol from S, and
t
1

, . . . , t
n

2 T . These are called atomic formulas.

– ' ^ ,' _ ,'! 2 F ,

– 8↵.', 9↵.' 2 F , where ↵ 2 V . We say that the scope of 8↵ (9↵) is
', and we say that any occurrence of ↵ in ' is bound.

In the rest of this document, we will use the less cumbersome Backus-Naur
notation when we specify syntax, e.g. when we define terms, formulas, types,
etc. The above definition of formulas will then look like:

', ::= P (t
1

, . . . , t
n

) | ' ^ | ' _ | '! | 8↵.' | 9↵.'.

2.2. FIRST-ORDER LOGIC 7

Example 2.2.2. Consider the signature S = {0,S,+,=}, where 0 is a nullary,
S a unary, and + a binary function symbol, and = a binary relation symbol.
Examples of terms of the language LS are

SS↵, 0+ S0, ↵+ �,

and an example of a formula is

8↵S↵ = ↵+ S0.

Definition 2.2.3 (Free variables). The set of free variables of a term t, FV(t),
is defined inductively:

• FV(↵) = {↵}, where ↵ is a variable;

• FV(f(t
1

, . . . , t
n

)) = FV(t
1

) [· · · [FV(t
n

).

Likewise, we inductively define the set of free variables of a formula A,
FV(A):

• FV(P (t
1

, . . . , t
n

)) = FV(t
1

) [· · · [FV(t
n

);

• FV(' ^) = FV(') [FV();

• FV(' _) = FV(') [FV();

• FV('!) = FV(') [FV();

• FV(8↵') = FV(') \ {↵};

• FV(9↵') = FV(') \ {↵}.

If � is a set of formulas, then FV(�) =
S

A2� FV(A).

Definition 2.2.4 (mFOL). Given a signature S, we define minimal first-order
logic (mFOL) over S as the natural deduction system with the inference rule
schemata given in Figure 2.1, where all the formulas are from LS .

Intuitionistic and classical logic

To get an intuitionistic first-order logic one needs the rule ex falso quodlibet :

?
'

where ' is any formula and ? is a symbol for absurdity. Instead of adding this
as a primitive rule, we will later see a method to make this rule admissible, by
adding intuitionistic reasoning to the atomic language.

To get a classical system, one will have to add a classical rule or axiom.
Typically, it is done by adding one of the following rules:

8 CHAPTER 2. PRELIMINARIES

�,' ` ' (Ax)

� ` ' � `
(^I)

� ` ' ^
� ` '

0

^ '
1 (^E

i

) for i = 0, 1

� ` '
i

� ` '
i (_I

i

) for i = 0, 1

� ` '
0

_ '
1

� ` ' _ �,' ` ✓ �, ` ✓
(_E)

� ` ✓

�,' `
(!I)

� ` '!

� ` '! � ` '
(!E)

� `

� ` '
(8I) ↵ 62 FV(�)

� ` 8↵'
� ` 8↵'

(8E)
� ` [↵ := t]

� ` [↵ := t]
(9I)

� ` 9↵'
� ` 9↵' �,' `

(9E) ↵ 62 FV() [FV(�)

� `

Figure 2.1: Natural deduction rules for mFOL

• Peirce’s law: We add

� ` (('!) ! ') ! '

as an axiomatic rule.

• Reductio ad absurdum: We allow reasoning of the form

[¬']
...
?
'

which is equivalent to adding ¬¬'! ' as an axiom.

• Law of excluded middle: We add the axiom

� ` ' _ ¬'.

All of these methods are equivalent in the sense that the systems extended
with any of these rules will prove the same formulas, but intuitively and
morally they are di↵erent. Later in this document we will mainly use the law
of the excluded middle, which is intuitively justified by the common model
theoretic intuition that something either holds or does not in a classical setting.

2.3. THE UNTYPED LAMBDA CALCULUS 9

Reduction ad absurdum and Peirce’s law have an interesting counter-part in
computer programming: Continuation Passing Style programming.

We define the systems iFOL, mcFOL and cFOL, which are simple extensions
of mFOL.

Definition 2.2.5 (iFOL). By adding nullary relation symbol ? to the signa-
ture, and adding the inference rule ex falso quodlibet

� ` ? (?E)
� ` '

to mFOL, we get intuitionistic first-order logic, iFOL. We define negation of a
formula ¬' := '! ?.

Definition 2.2.6 (mcFOL). By adding the law of the excluded middle

� ` ' _ ¬' (EM)

as an axiom schema to mFOL, we get minimal classical first-order logic.

Definition 2.2.7 (cFOL). By adding the law of the excluded middle to iFOL,
we get classical first-order logic.

The systems can be ordered by deductive strength thus:

mFOL ⇢ iFOL

\ \

mcFOL ⇢ cFOL

It is well-known that iFOL is sound and complete with respect to Heyting
semantics, and that cFOL is sound and complete with respect to Tarskian
semantics.

2.3 The untyped lambda calculus

We give a brief introduction to the untyped lambda calculus, mainly following
[9].

Definition 2.3.1 (Untyped �-terms). We will work with an infinite set of
�-variables x, y, z, The untyped �-terms are defined as follows:

t, s ::= x | �x.t | ts.

10 CHAPTER 2. PRELIMINARIES

Definition 2.3.2 (Free variables). We define the set of free variables of a
�-term t, FV(t), by induction as follows.

• FV(x) = {x}, when x is a �-variable;

• FV(ts) = FV(t) [FV(s);

• FV(�x.t) = FV(t) \ {x}.

A term t is said to be closed if FV(t) = ;, and otherwise it is open. If a variable
x occurs in a term t, but x 62 FV(t), then x is bound ; in this case it must be
under the scope of �x.

Definition 2.3.3 (Substitution). The substitution of t for x in s, written
s[x := t], is defined as follows:

x[x := t] = t;
y[x := t] = y, if x 6= y;

(st)[x := t] = (s[x := t])(t[x := t]);
(�x.s)[x := t] = �x.s;
(�y.s)[x := t] = �y.s[x := t], if x 6= y.

It is, in other words, the result of substituting any free occurrence of x in s
with t.

Definition 2.3.4 (↵-equivalence). Two terms t, s are said to be ↵-equivalent,
t =

↵

s, if they only di↵er on bound variables, i.e.:

• If y is neither free nor bound in t, then

�x.t =
↵

�y.t[x := y].

• If t =
↵

s, then

�x.t =
↵

�x.s, for all variables x,

tr =
↵

sr, and

rt =
↵

rs. for all �-terms r.

In practice, we will not distinguish between ↵-equivalent terms. So we will
suppress the ↵-subscript, and, e.g., say �x.x = �y.y.

Remark 2.3.5 (Barendregt’s variable convention). If t
1

, . . . , t
n

occur in a certain
mathematical context (e.g. definition, proof), then in these terms all bound
variables are chosen to be di↵erent from the free variables.

2.4. SIMPLY TYPED LAMBDA CALCULUS 11

Because of this convention, any substitution will always be capture avoiding,
which means that we will avoid problematic substitutions like

(�x.yx)[y := x] = �x.xx,

since x is both occurring as a bound variable (in �x.yx) and as a free variable
(in the substituendum x), hence it does not satisfy the variable convention.
We will follow this variable convention in all the systems that we define in this
document.

Remark 2.3.6. Sometimes it can be necessary to do a vacuous �-abstraction,
i.e., an abstraction over a non-occurring variable. Instead of writing �x.t for
x 62 FV(t) we will use the notation � .t.

Definition 2.3.7 (Compatible relations). We say that a relation R on �-terms
is compatible if, for all terms t, s, r

• If tRs, then �x.t R �x.s, for all variables x;

• If tRs, then trRsr;

• If tRs, then rtRrs.

The compatible closure of a relation R is the least compatible relation R0

such that R ✓ R0.

Definition 2.3.8 (�-reduction). The relation !
�

is defined as the least
compatible relation that satisfies

(�x.t)s !
�

t[x := s].

A term of the shape (�x.t)s is called a �-redex (reducible expression). If a
term does not contain any �-redexes, then it is said to be in �-normal form.

2.4 Simply typed lambda calculus

We define a simply typed lambda calculus, �!. This is the simplest example of
a type theory, and all systems that we will define later will be extensions of
�!.

There are two common ways of presenting simply typed lambda calculus: In
Curry style and in Church style. In the Curry style, we use the untyped �-terms,
and hence the same term can be assigned multiple di↵erent types, while in
Church style simply typed lambda calculus we annotate every abstractions
with a type so as to ensure that every term has a unique type. We will present
it in Church style.

Definition 2.4.1 (Simple types). We have a non-empty set of atomic types,
A. The types of �! are then defined as the least set T such that

12 CHAPTER 2. PRELIMINARIES

• A ✓ T ;

• If �, ⌧ 2 T , then � ! ⌧ 2 T .

Equivalently, we can express the definition of T with BNF-notation thus:
The types of �! are

�, ⌧ ::= a | � ! ⌧,

where a ranges over the atomic types.

Remark 2.4.2. When writing types, we employ association to the right, i.e.,
instead of writing �

1

! (�
2

! �
3

), we will write �
1

! �
2

! �
3

.
We will use the following abbreviation

�0 ! ⌧ := ⌧

�n+1 ! ⌧ := � ! �n ! ⌧.

Definition 2.4.3 (Type environments). An environment in �! is a finite set
of pairs of �-variables and types, such that each variable occurs maximally
once. It is typically denoted �,�, and written on the form

� = x
1

: '
1

, · · · , x
n

: '
n

.

Definition 2.4.4 (�!-terms). The di↵erence between typed and untyped
�-terms is that all variables are annotated with a type: The terms in �! are
defined as follows:

t, s := x⌧ | �x⌧ .t | ts,

where ⌧ is a type.

In practice we can often deduce the type of a variable from the context, in
these cases we will typically omit the type annotation, but formally they are
still there.

Definition 2.4.5 (Type judgments). A type judgment is a triple consisting of
an environment, a term, and a type, written � ` t : '.

Definition 2.4.6 (Type derivation). A type derivation of a judgment � ` t : '
is a finite tree where:

• � ` t : ' is the root label;

• Any label is obtained by its children’s labels by an application of one of
the typing rules from Figure 2.2.

The simply typed lambda calculus corresponds exactly to what is known
as minimal propositional logic, which is—basically—minimal first order logic
without quantifiers. This is what is originally known as the Curry–Howard
isomorphism or Curry–Howard correspondence:

2.5. GÖDEL’S SYSTEM T 13

�, x : ⌧ ` x⌧
�, x : � ` t : ⌧

� ` �x�.t : � ! ⌧
� ` t : � ! ⌧ � ` s : �

� ` ts : ⌧

Figure 2.2: Typing rules for �!

Theorem 2.4.7 (The Curry–Howard correspondence). If � ` t : � in �!,
where � = x

1

: �
1

, . . . , x
n

: �
n

, then �0 ` � in minimal propositional logic,
where �0 = �

1

, . . . ,�
n

.

For a proof, see [37].

2.5 Gödel’s System T

Gödel’s System T (�T) is an extension of �! that adds the natural numbers
as a primitive datatype together with a recursion operator. In the following
definition we also add a Boolean datatype for convenience—this is merely
syntactic sugar, since we could just as well have used zero and one to correspond
to true and false.

Later in this document, we will see the idea behind the transition from �!
to �T be applied on other systems. One should see �T as a model of a simple,
yet powerful, computer programming language.

Definition 2.5.1. The types of �T are

�, ⌧ ::= N | Bool | � ! ⌧

Definition 2.5.2. The terms of �T are defined inductively over an infinite set
of typed �-variables x⌧ , y�, . . .

t, u ::= c | x⌧ | tu | �x⌧ .t
c ::= 0 | S | True | False | Rec

⌧

| if
⌧

Definition 2.5.3. The typing judgments � ` t : � in �T are given by the
typing rules in Figure 2.3.

Definition 2.5.4. Reduction, !T, on �T-terms is defined as the compatible
closure of the following reduction rules:

(�x⌧ .t)u !
�

t[x := u]
Rec

⌧

u v 0 !
Rec1 u

Rec
⌧

u v (St) !
Rec2 v t (Rec

⌧

u v t)
if

⌧

True u v !
True

u
if

⌧

False u v !
False

v

As usual, ⇣T denotes the transitive and reflexive closure of !T, while =T

denotes the transitive, reflexive and symmetric closure.

14 CHAPTER 2. PRELIMINARIES

Constants:
� ` 0 : N, � ` S : N ! N, � ` True : Bool, � ` False : Bool,

� ` Rec
⌧

: ⌧ ! (N ! (⌧ ! ⌧)) ! N ! ⌧, � ` if
⌧

: Bool ! ⌧ ! ⌧ ! ⌧

Variables:

�, x : ⌧ ` x : ⌧

Composed terms:

� ` t : � ! ⌧ � ` u : �
� ` tu : ⌧

�, x� ` t : ⌧
� ` �x�.t : � ! ⌧

Figure 2.3: Typing rules for terms in �T

Definition 2.5.5. A term t is said to be in normal form if t⇣ t0 if and only
if t ⌘ t0, i.e., t has no possible reductions.

The system �T satisfies the following important meta-theorems:

Theorem 2.5.6. �T satisfies subject reduction: If � ` t : � and t⇣ t0, then
� ` t0 : �.

Proof. It is easy to check that all the reduction rules preserve typing.

Theorem 2.5.7. �T is confluent: If t
1

⇣ t
2

and t
1

⇣ t
3

, then there is a term
t
4

such that t
2

⇣ t
4

and t
3

⇣ t
4

.

t
1

t
2

t
3

t
4

Theorem 2.5.8. �T is strongly normalizing: There are no infinite reduction
chains

t
1

! t
2

! t
3

! · · ·

which means that every term has a normal form, and no matter which reductions
we choose, we will eventually reach a normal form.

The proofs of Theorems 2.5.7 and 2.5.8 can be found in [37].

2.5. GÖDEL’S SYSTEM T 15

Example 2.5.9. We can define equality between numbers in �T. A reasonable
implementation of equality needs to satisfy the following:

` equal : N ! N ! Bool

equal 0 0 = True

equal 0 (Sm) = False

equal (Sn) 0 = False

equal (Sn) (Sm) = equal n m

To begin with, we define a term that checks for zero:

isZero := Rec
Bool

True (� N� Bool.False)

This fulfills:
` isZero : N ! Bool

isZero 0 ⇣ True

isZero (Sn) ⇣ False.

Now, the first part of equal can be defined thus (for some, as of yet, undefined
equal aux):

equal := Rec
N!Bool

isZero equal aux,

for then

equal 0 0⇣ isZero 0⇣ True,

equal 0 (Sm)⇣ isZero (Sm)⇣ False.

We define equal aux as follows:

equal aux := � N�fN!Bool.Rec
Bool

False (�mN� Bool.fm),

for then

equal (Sn) 0⇣ equal aux n (equal n) 0

⇣ Rec
Bool

False (�mN� Bool.equal n m) 0

⇣ False,

and

equal (Sn) (Sm)⇣ equal aux n (equal n) (Sm)

⇣ Rec
Bool

False (�mN� Bool.equal n m) (Sm)

⇣ equal n m.

Sometimes—whenever it does not cause confusion—we will use the notation
t
1

= t
2

as an abbreviation of equal t
1

t
2

.

16 CHAPTER 2. PRELIMINARIES

Theorem 2.5.10 (Primitive recursive functions in �T). All primitive recursive
functions are representable in �T.

Proof. Every primitive recursive function F , except 0 and S, is defined by
exactly one of from the following three schemes:

F (x
1

, . . . , x
i

, . . . , x
n

) = x
i

(projF)

F (x
1

, . . . , x
n

) = G(H
1

(x
1

, . . . , x
n

), . . . , H
m

(x
1

, . . . , x
n

)) (compF)

F (0, x
1

, . . . , x
n

) = G(x
1

, . . . , x
n

)
^ F (S(y), x

1

, . . . , x
n

) = H(F (y, x
1

, . . . , x
n

), y, x
1

, . . . , x
n

) (recF)

where G,H,H
1

, . . . , H
m

are previously defined primitive recursive functions.
It should be clear how to represent these in �T. If, for example, G,H are
represented by G, H and F is defined by (rec

F

), then F is represented by:

F := Rec
N

G (�nN�f.H f n).

Remark 2.5.11. The expressivity of �T is considerably larger than just the
primitive recursive functions. When defining a primitive recursive function
using a recursion axiom, we are only allowed to recurse over the natural
numbers. In �T, Rec

⌧

can recurse over any type ⌧ . The following is an
example of a function that is definable in �T but is not primitive recursive:
Let A : N2 ! N be a function such that

A(0, n) = n+ 1
A(m+ 1, 0) = A(m, 1)

A(m+ 1, n+ 1) = A(m,A(m+ 1, n)).

In [33] this is shown not to be primitive recursive; it is a variant of the
Ackermann function. But since we are allowed to recurse over functions of
type N ! N, we can easily define this in �T:

ack := Rec
N!N

S (�kN�fN!N.Rec
N

(f (S0))(�lN�nN.fn)).

2.6 Annotated first-order proofs

Proof calculus for mFOL

We will now introduce a proof calculus for mFOL, which we will call MQC—
minimal quantifier calculus. By proof calculus, we basically mean a type
system where the type derivations correspond exactly to the proofs in mFOL.

Definition 2.6.1 (Types of MQC). The types of MQC are the formulas of
mFOL.

2.6. ANNOTATED FIRST-ORDER PROOFS 17

Definition 2.6.2 (Untyped terms of MQC). The untyped terms of MQC are

t, u, v := x | tu | tn | �xu | �↵u
| ht, ui | ⇡

0

u | ⇡
1

u | ◆
0

u | ◆
1

u
| t[x.u, y.v] | (n, t) | t[(↵, x).u]

where x, y range over an infinite set of �-variables, ↵ over variables of LS , and
n over terms of LS .

Definition 2.6.3 (Typing judgments in MQC). An environment, �, in MQC
is a finite set of pairs of distinct �-variables with formulas. It is typically
written on the form � = x

1

: '
1

, . . . , x
n

: '
n

.
A typing judgment is a triple of the form � ` u : ', and we use it to

mean that there exists a derivation using the typing rules from Figure 2.4 with
� ` u : ' at the root.

Definition 2.6.4 (Reduction rules for MQC). We define the reduction relation
!

MQC

as the compatible closure of the following reduction rules:

(�x.u)t !
�1 u[x := t]

(�↵.u)t !
�2 u[↵ := t]

⇡
0

hu
0

, u
1

i !
⇡0 u

0

⇡
1

hu
0

, u
1

i !
⇡1 u

1

◆
0

(u)[x
1

.t
1

, x
2

.t
2

] !
◆0 t

0

[x
1

:= u]
◆
1

(u)[x
1

.t
1

, x
2

.t
2

] !
◆1 t

1

[x
2

:= u]
(n, u)[(↵, x).v] !9 v[↵ := n][x := u], for each term n

Theorem 2.6.5 (Curry–Howard correspondence). � `mFOL ' i↵ there is a t
such that � `MQC t : '.

18 CHAPTER 2. PRELIMINARIES

�, x : ' ` x : '

� ` u : ' � ` v :

� ` hu, vi : ' ^
� ` u : '

0

^ '
1

for i = 0, 1

� ` ⇡
i

u : '
i

� ` u : '
i

for i = 0, 1

� ` ◆
i

u : '
0

_ '
1

� ` u : ' _ �, x : ' ` v
0

: ✓ �, x : B ` v
1

: ✓

� ` u[x.v
0

, x.v
1

] : ✓

�, x : ' ` u :
� ` �xu : A !

� ` u : '! � ` v : '
� ` uv :

� ` u : '
↵ 62 FV(�)

� ` �↵u : 8↵'
� ` u : 8↵.'(↵)

t is a term of L
� ` ut : '(t)

� ` u : '(t)
t is a term of L

� ` (t, u) : 9↵'(↵)

� ` u : 9↵' �, x : ' ` v : ✓
↵ 62 FV(C) [FV(�)

� ` u[(↵, x).v] : ✓

Figure 2.4: Type inference rules for MQC

Chapter 3

Friedman’s A-translation

In this chapter we will present a proof of the following old theorem by Kreisel
[25]:

Theorem 3.0.6. Peano Arithmetic is a conservative extension of Heyting
Arithmetic over the ⇧0

2

-sentences.

The proof will make use of two techniques that are central to area of classical
program extraction, namely the Gödel–Gentzen double negation translation
and Friedman’s A-translation.

The theorem has the following corollary, which gives the main motivation
to why we want to examine the computational content of classical proofs:

Corollary 3.0.7. A recursive function is provably total in Peano Arithmetic
if and only if it is provably total in Heyting Arithmetic.

This tells us, that any classical proof of totality of a recursive function can
be converted to an intuitionistic proof, and therefore the classical proof must
be constructive, and have computational content in some sense.

3.1 The arithmetics PA and HA

We formalize arithmetic as natural deduction systems. Firstly, we have to fix
the signature of the language. Notice that we assume to have the concept of
primitive recursive relations defined in our meta-language.

Definition 3.1.1 (Signature of arithmetic). Let

S = {0,S,=} [{P | P is a primitive recursive relation}

where 0 is a nullary function symbol, S is a unary function symbol, = is a
binary relation symbol, and P is an n-ary relation symbol, if P is an n-ary
primitive recursive relation.

19

20 CHAPTER 3. FRIEDMAN’S A-TRANSLATION

Then the language L = LS consists of all formulas of arithmetic. We will
use this language for iFOL and cFOL.

Notation 3.1.2. We will write � `
I

' if � ` ' in iFOL, and � `
C

' if � ` ' in
cFOL.

Definition 3.1.3 (The Peano axioms). Let ⌦ be the (countable) set of formulas
consisting of the universal closures of the following formulas.

Axioms for equality:
(refl): ↵ = ↵

(trans): ↵ = � ^ � = � ! ↵ = �
(cong

P

): ↵
i

= ↵0
i

! (P (↵
1

, . . . ,↵
i

, . . . ,↵
n

) = P (↵
1

, . . . ,↵0
i

, . . . ,↵
n

))
for every n-ary P and 1 i n

(congS) ↵ = � ! S↵ = S�
Axioms for successor:
(succ

1

): ¬(S↵ = 0)
(succ

2

): S↵ = S� ! ↵ = �
Induction axiom schema:

(ind): '(0) ^ 8↵.('(↵) ! '(S↵)) ! 8↵.'(↵)
for every formula '(↵)

Defining axioms:
(succ

P

): P (↵,S↵)
(const

P

): P (↵
1

, . . . ,↵
n

,Sm0)
(proj

P

): P (↵
1

, . . . ,↵
i

, . . . ,↵
n

,↵
i

)
(comp

P

): R
1

(↵
1

, . . . ,↵
n

,�
1

) ^ · · · ^R
m

(↵
1

, . . . ,↵
n

,�
m

)
^Q(�

1

, . . . ,�
m

, �) ! P (↵
1

, . . . ,↵
n

, �)
(rec

P

): (Q(↵
1

, . . . ,↵
n

,�) ! P (0,↵
1

, . . . ,↵
n

,�))
^ (P (�,↵

1

, . . . ,↵
n

, �) ^R(�,�,↵
1

, . . . ,↵
n

, ")
! P (S�,↵

1

, . . . ,↵
n

, "))

These are the Peano axioms.

Definition 3.1.4 (Peano arithmetic and Heyting arithmetic). We say that a
formula ' is derivable in Peano arithmetic, and write `PA ', if there is a finite
subset � ⇢

!

⌦ of the Peano axioms such that � `
C

'. Similarly, we say that
' is derivable in Heyting arithmetic, `HA, if � `

I

' for some � ⇢
!

⌦.

3.2 Double-negation translation

We first define the double-negation translation of formulas. It was invented
independently by Gödel and Gentzen in the early thirties [15, 18].

3.2. DOUBLE-NEGATION TRANSLATION 21

Definition 3.2.1 (Double-negation translation). Let ' be a formula. Define
the double-negation translation '� of ' as follows:

?� := ?
P� := ¬¬P, where P 6= ? is atomic

(' _)� := ¬¬('� _ �)

(' ^)� := '� ^ �

('!)� := '� ! �

(8↵.')� := 8↵.'�

(9↵.')� := ¬¬9↵.'�

So '� is the result of double-negating all atomic, disjunctive and existential
subformulas of '.

Lemma 3.2.2 (Properties of double-negation translation). Let ' be a formula,
� a set of formulas, and �� = { � | 2 �}.

1. `
C

'$ '�,

2. ¬¬'� `
I

'�,

3. If � `
C

', then �� `
I

'� (this justifies calling it a translation).

Proof. 1. We need to show that ' `
C

'� and '� `
C

' for any formula
'. This is done by induction on the complexity of ', and we only have
to consider the atomic, disjunctive, and existential cases. We show the
atomic case, the rest are similar. For P `

C

¬¬P we have the derivation

¬P x P
? x¬¬P

and for the case ¬¬P `
C

P we have

P _ ¬P P x

¬¬P ¬P x

?
P x

P

2. This is also an easy induction. We show just the atomic case, where we
need ¬¬¬¬' `

I

¬¬':

¬¬¬¬P

¬¬P y ¬P x

? y
¬¬¬P

? x¬¬P

22 CHAPTER 3. FRIEDMAN’S A-TRANSLATION

3. We show this by induction on the depth of the derivation � `
C

'. Most
of the rules are trivial, those are the rules that iFOL and cFOL have in
common. See for example implication elimination:

�,' `
C

� `
C

'!
becomes

��,'� `
I

 �

�� `
I

'� ! �

So we have only the excluded middle rule left. We will only have to
show that `

I

¬¬(' _ ¬') for any formula ', it will then follow that
� `

I

¬¬('� _ ¬'�). We show this with the following derivation:

¬(' _ ¬')x

¬(' _ ¬')x
'y

' _ ¬'
? y¬'

' _ ¬'
? x

¬¬(' _ ¬')

Observation 3.2.3. In general not ' `
I

'�.

This can be shown with a counter-example. One such is ¬8↵.P (↵) 6`
I

¬8↵.¬¬P (↵), which can be shown using Kripke semantics.

3.3 A-translation

The A-translation was introduced by H. Friedman in [14] to give a simple proof
of Kreisel’s theorem. The A in the name stems from the name Friedman used
for the arbitrary formula that is inserted via the translation.

Definition 3.3.1 (A-translation). Let ' and A be formulas such that no
bound variable of ' is free in A. We define the A-translation 'A of ' as
follows:

?A := A

PA := P _A, where P 6= ? is atomic

(' ^)A := 'A ^ A

(' _)A := 'A _ A

('!)A := 'A ! A

(8↵.')A := 8↵.'A

(9↵.')A := 9↵.'A

3.3. A-TRANSLATION 23

So 'A is the result of substituting all atomic subformulas P with P _ A,
and replacing any ? with A. Note that (¬P)A = P _A ! A.

Lemma 3.3.2 (Properties of the A-translation). Let ' be a formula, � a
set of formulas and A a formula such that 'A and �A are defined, where
�A = { A | 2 �}.

1. `
C

'A $ ' _A

2. A `
I

'A

3. If � `
I

', then �A `
I

'A

4. In general not ' `
I

'A

Proof. 1. We have to show that 'A `
C

' _ A and ' _ A `
C

'A. This
is easily done by induction on the complexity of '. We illustrate by
showing one case, that of (' ^) _A `

C

'A ^ A:

(' ^) _A

' ^ x

'

' _A

IH
'A

' ^ x

 _A

IH
 A

'A ^ A

Ax

' _A

IH
'A

Ax

 _A

IH
 A

'A ^ A

x
'A ^ A

2. This is a straight-forward induction on the complexity of '.

3. This is done by induction on the depth of the derivation of � `
I

'. For
the ex falso quodlibet rule, the induction hypothesis is that �A `

I

A, but
from 2 we have A `

I

'A, this together gives us �A `
I

'A. As for the rest
of the rules, they are quite simple. Here is the implication introduction
case:

�,' `
� ` '!

becomes
IH

�A,'A ` A

�A ` 'A ! A

The rest of the rules without quantifiers are similarly obvious. For the
quantifier rules, we have to take care of variable bindings. Here existential
introduction:

� ` '[↵ := t]

� ` 9↵.'
becomes

IH
�A ` 'A[↵ := t]

9
I

�A ` 9↵.'A

because ('[↵ := t])A = 'A[↵ := t] and (9↵.')A = 9↵.'A.

24 CHAPTER 3. FRIEDMAN’S A-TRANSLATION

Observation 3.3.3. In general not ' `
I

'A.

A counter-example for this is ¬¬A 6`
I

(¬¬A)A.

3.4 The proof

We know from Observation 3.2.3 and Observation 3.3.3 that it does not always
hold that ' `

I

'� or ' `
I

'A. But in some cases it does hold, and these are
the cases where the A-translation proof method is applicable. In our case, this
is HA. We first observe some easy cases:

Observation 3.4.1. If ' is on one of the forms

• P ,

• P ^Q,

• P
1

^ · · · ^ P
m

! Q, or

• (P
1

! P
2

) ^ (Q
1

^Q
2

! Q
3

),

where P, P
1

, . . . , P
m

, Q,Q
1

, Q
2

, Q
3

are atomic formulas, then ' `
I

'� and
' `

I

'A.

This leads us to the following interesting lemma:

Lemma 3.4.2. Let ' be a Peano axiom. Then `HA '
� and `HA '

A.

Proof. Every axiom, except the induction axiom, is on one of the shapes from
Observation 3.4.1. So we only need to check the induction axiom: Let ' be an
instance of the induction axiom:

' = (0) ^ 8↵((↵) ! (S(↵))) ! 8↵. (↵),

for some formula (↵). Now:

'� = �(0) ^ 8↵(�(↵) ! �(S(↵))) ! 8↵. �(↵),

'A = A(0) ^ 8↵(A(↵) ! A(S(↵))) ! 8↵. A(↵),

which are themselves axioms of HA.

Corollary 3.4.3. Let ' and A be formulas.

1. If `PA ', then `HA '
�;

2. If `HA ' and 'A is defined, then `HA '
A.

Proof. 1. Let � be the axioms used in the derivation `PA '.

� `
C

' =) �� `
I

'� =) `HA '
�.

3.4. THE PROOF 25

2. Let � be the axioms used in the derivation `HA '.

� `
I

' =) �A `
I

'A =) `HA '
A.

Definition 3.4.4 (⇧0

2

-, ⌃0

1

-formulas). A ⌃0

1

-formula is of the form

9↵
1

· · · 9↵
n

.'(↵
1

, . . . ,↵
n

),

where ' is quantifier-free. If is a ⌃0

1

-formula, then

8↵
1

· · · 8↵
n

.'(↵
1

, . . . ,↵
n

),

is called a ⇧0

2

-formula.

We will use the following fact to simplify the ⌃0

1

-formulas:

Lemma 3.4.5. For any quantifier-free formula '(↵
1

, . . . ,↵
n

), there is a prim-
itive recursive relation P (↵

1

, . . . ,↵
n

) such that

`HA '(↵1

, . . . ,↵
n

) $ P (↵
1

, . . . ,↵
n

).

Thus, whenever we talk about a ⌃0

1

-formula, we only need to consider the
ones of the form 9↵.P (↵).

Lemma 3.4.6. If ' is a ⌃0

1

-formula, then `
I

'A $ ' _A.

Proof. Firstly, one can check that

9↵.(' _) $ 9↵.' _ ,

whenever ↵ 62 FV(). Let now 9↵.P (↵) be a ⌃0

1

-formula. Then

(9↵.P (↵))A = 9↵.(P (↵) _A),

and so
`
I

(9↵.P (↵))A $ 9↵P (↵) _A.

Proof of Theorem 3.0.6

We need to show that `PA ' if and only if `HA ' for any ⇧0

2

-sentence '. It
is su�cient to show that `PA ' if and only if `HA ' for any ⌃0

1

-formula, for
whenever we have a ⌃0

1

-formula '(↵
1

, . . . ,↵
n

) for which `HA '(↵
1

, . . . ,↵
n

)
holds, we can apply n universal quantifier introduction rules to close it, in
order to get a proof of the ⇧0

2

-sentence `HA 8↵
1

· · · 8↵
n

.'(↵
1

, . . . ,↵
n

),

26 CHAPTER 3. FRIEDMAN’S A-TRANSLATION

Let 9↵.P (↵) be a given ⌃0

1

-formula, and set A := 9↵.P (↵). Assume that
`PA A. We first do a double-negation translation, and get `HA ¬¬A. By
A-translation, we get `HA (¬¬A)A. But

(¬¬A)A = (AA ! A) ! A,

and since `HA AA $ A _A $ A, and so `HA AA ! A, we get

`HA (¬¬A)A $ A.

Therefore we can conclude `HA A, as wanted.

Chapter 4

Control operators

The �-calculus has for a long time been seen as a natural basis for programming
languages, and has thus been used as a meta-language to describe features
in programming languages at least since Landin used it to study the features
of Algol 60 [27]. Since the �-calculus is purely functional it cannot be used
to describe the jumps and labels of Algol 60, and therefore Landin had
to extend the calculus with the non-functional operator J , an example of a
control operator—an operator that behaves in a non-local way in order to
change the control flow of the program execution. Control operators have since
been introduced to functional programming languages. The Scheme dialects,
e.g., have control operators equal in power to J , namely catch and throw [38]
and call-with-current-continuation (call/cc) [35]. According to Talcott, the
advantage of using control operators is that they “provide a way of pruning
unnecessary computation and allow certain computations to be expressed by
more compact and conceptually manageable programs.” [40].

It was later discovered by Gri�n [20] that adding control operators to
typed �-calculi corresponds, via the Curry–Howard correspondence, to adding
classical reasoning to the logic. He did this by observing that Felleisen’s
extension of the �-calculus with control operators [13] could be typed in such a
way that the types of the control operators corresponded to ex falso quodlibet
and double negation elimination.

In this chapter we will first introduce the system �µ by Parigot [30] which
is an extension to simply typed �-calculus which by means of adding the
µ-operator makes it possible to define call/cc and catch-throw, and with which
it is possible to define terms with types that are not otherwise allowed in
intuitionistic systems, e.g. Peirce’s law. Secondly, in order to get closer to a
“real” programming language, we will introduce the �µT-calculus by Geuvers,
Krebbers and McKinna [16] which is an extension of the �µ-calculus adding
the natural numbers as a primitive datatype with a primitive recursor in the
style of Gödel’s system T.

27

28 CHAPTER 4. CONTROL OPERATORS

�, x : ⌧ ;� ` x⌧
�, x : �;� ` t : ⌧

�;� ` �x�.t : � ! ⌧

�;� ` t : � ! ⌧ �;� ` s : �
�;� ` ts : ⌧

�;�, a : ⌧ ` k : ?
�;� ` µa⌧ .k : ⌧

�;�, a : ⌧ ` t : ⌧

�;�, a : ⌧ ` [a]t : ?

Figure 4.1: Typing rules for �µ

4.1 The system �µ

In 1992 M. Parigot [30] introduced the �µ-calculus as a way of extending
the Curry–Howard correspondence to classical proofs, by way of adding the
control operator µ to the simply typed lambda calculus. Together with the
control operator we also introduce a special kind of variables, the µ-variables or
addresses. Therefore, the environments in �µ will be bipartite; an environment
will consist of a set � of �-variables together with types as usual, and a set �
of µ-variables together with types.

Definition 4.1.1 (Terms of �µ). The terms of �µ are defined inductively
over an infinite set of �-variables (x, y, z, . . .) and an infinite set of µ-variables
(a, b, c, . . .) as follows

t, s ::= x | �x⌧ .t | ts | µa⌧ .k
k ::= [a]t

Here, ⌧ ranges over simple types as defined in Definition 2.4.1.

Definition 4.1.2 (Free variables). We let FV(t) denote the set of free �-
variables in t, while FCV(t) denotes the set of free µ-variables.

Definition 4.1.3 (Typing judgments in �µ). The types of �µ are the same
as those in �! (Definition 2.4.1), with an extra atomic type ? (read bottom).
A typing judgment �;� ` t : ⇢ is derivable in �µ if there is a derivation tree
that uses the rules of Figure 4.1 with �;� ` t : ⇢ as the conclusion.

Notice that the first three rules in Figure 4.1 are the same as the rules of
�! (Figure 2.2). The two new rules are known as, respectively, activate and
passivate.

Example 4.1.4. In �µ we can inhabit the type of the non-intuitionistic Peirce’s
law ((p ! q) ! p) ! p. We get the term

peirce := �x(p!q)!pµap.[a]x(�zpµbq.[a]z)

by the following derivation:

4.1. THE SYSTEM �µ 29

x : (p ! q) ! p

z : p

[a]z : ?
µbq.[a]z : q

�zpµbq.[a]z : p ! q

x(�zpµbq.[a]z) : p

[a]x(�zpµbq.[a]z) : ?
µap.[a]x(�zpµbq.[a]z) : p

�x(p!q)!pµap.[a]x(�zpµbq.[a]z) : ((p ! q) ! p) ! p

Theorem 4.1.5. The strength of �µ is exactly minimal classical propositional
logic. I.e.,

� ` ' in minimal classical logic

()

there is some term t in �µ such that �; ; ` t : '.

A proof of this can be found in [24].

Reduction in �µ

In order to define the reduction rules we need to introduce a new notion of
substitution, namely structural substitution.

Definition 4.1.6 (Call-by-name contexts). A call-by-name evaluation context
is defined as

E ::= ⇤ | Et,

where t ranges over terms.

Definition 4.1.7 (Structural substitution). Let t be a �µ-term, and let a, b be
µ-variables and E a call-by-name evaluation context. We define the structural
substitution t[a := bE] of b and E for a by induction as follows:

x[a := bE] := x

(�x.t)[a := bE] := �x.t[a := bE]

(ts)[a := bE] := t[a := bE]s[a := bE]

(µa.k)[a := bE] := µa.k

(µc.k)[a := bE] := µc.k[a := bE] if c 6= a

([a]t)[a := bE] := [b]E[t[a := bE]]

([c]t)[a := bE] := [c]t[a := bE] if c 6= a

30 CHAPTER 4. CONTROL OPERATORS

Definition 4.1.8 (Reduction). We define the reduction relation ! on �µ as
the compatible closure of the following rules:

(�x.t)s !
�

t[x := s]
(µa.k)t !

µR

µa.k[a := a (⇤t)]
µa.[a]t !

µ⌘

t if a 62 FCV(t)
[a]µb.k !

µ◆

k[b := a⇤]

Definition 4.1.9 (Catch and throw). We define the terms catch
a

t and
throw

a

t as follows:

catch
a

t := µa.[a]t

throw
a

t := µb.[a]t where b 62 FCV([a]t)

Lemma 4.1.10. The terms catch and throw behaves as follows, where E is
a call-by-name context:

1. E[throw
a

t]⇣ throw
a

t,

2. catch
a

(throw
a

t)⇣ catch
a

t

3. catch
a

t⇣ t if a 62 FCV(t)

4. throw
b

(throw
a

t)⇣ throw
a

t

Proof. For the first reduction, do an induction on the structure of E. The rest
follows directly from the definitions and the reduction rules.

The �µ-calculus satisfies the main meta-theoretical theorems:

Theorem 4.1.11. �µ is confluent.

Proof. A proof can be found in [24].

Theorem 4.1.12. �µ satisfies subject reduction.

Proof. A proof can be found in [24].

Theorem 4.1.13. �µ is strongly normalizing.

Proof. This is proven in [31].

4.2. THE SYSTEM �µT 31

�, x : ⌧ ;� ` x⌧
�, x : �;� ` t : ⌧

�;� ` �x�.t : � ! ⌧

�;� ` t : � ! ⌧ �;� ` s : �
�;� ` ts : ⌧

�;�, a : ⌧ ` k : ?
�;� ` µa⌧ .k : ⌧

�;�, a : ⌧ ` t : ⌧

�;�, a : ⌧ ` [a]t : ?

�;� ` 0 : N
�;� ` t : N

�;� ` St : N

�;� ` t : ⌧ �;� ` s : N ! ⌧ ! ⌧ �;� ` r : N
�;� ` Rec

⌧

t s r : ⌧

Figure 4.2: Typing rules for �µT

4.2 The system �µT

The �µT-calculus arises from the �µ-calculus in the same way that the �T-
calculus arises from the �!-calculus, namely by “hard-coding” the natural
numbers into the system by adding an atomic type N, primitive terms 0 : N
and S : N ! N, and a recursor Rec.

Definition 4.2.1 (Terms of �µT). The terms of �µT are defined inductively
over an infinite set of �-variables (x, y, z, . . .) and an infinite set of µ-variables
(a, b, c, . . .) as follows:

t, s, r := x | �x⌧ .t | ts | µa⌧ .k | 0 | St | Rec
⌧

t s r

k := [a]t

Here, ⌧ ranges over �T-types, as defined in Definition 2.5.1.

Definition 4.2.2 (Free variables). As in �µ, we let FV(t) and FCV(t) denote
the sets of free �-variables and µ-variables, respectively.

We define substitution t[x := s] in the obvious way, such that it is capture
avoiding for both �- and µ-variables.

Definition 4.2.3 (Typing judgments in �µT). A typing judgment �;� ` t : ⇢
is derivable in �µT if there is a derivation tree that uses the rules of Figure 4.2
with �;� ` t : ⇢ as the conclusion, and similarly, a typing judgment �;� ` k : ?
is derivable in �µT in case it is the conclusion of such a derivation tree.

Lemma 4.2.4. Typing judgments in �µT are closed under weakening of the
environment, i.e., if � ✓ �0, � ✓ �0, and �;� ` t : ⌧ , then �0;�0 ` t : ⌧

32 CHAPTER 4. CONTROL OPERATORS

Proof. By easy induction on the depth of the derivation.

When we work with numerals, we will abbreviate them as n := Sn0.
In order to define reduction in �µT we will first need the concepts of

contexts and structural substitution.

Definition 4.2.5 (Contexts). We define the �µT-contexts as follows:

E ::= ⇤ | Et | SE | Rec t s E,

Such a context is singular if the depth of the ⇤ is exactly one, i.e.:

Es ::= ⇤t | S⇤ | Rec t s ⇤.

Definition 4.2.6 (Context substitution, composition). Given a context E
and a term t, we define E[s] as follows:

⇤[s] := s

(Et)[s] := E[s]t

(SE)[s] := SE[s]

(Rec t s E)[s] := Rec t s E[s]

Given two contexts E and F , we define their composition EF thus:

⇤F := F

(Et)F := (EF)t

(SE)F := S(EF)

(Rec t s E)F := Rec t s (EF)

Definition 4.2.7 (Structural substitution). We define the structural substi-
tution t[a := bE] of a µ-variable b and a context E for a µ-variable a as
follows:

x[a := bE] := x

(�x.t)[a := bE] := �x.t[a := bE]

(ts)[a := bE] := t[a := bE]s[a := bE]

0[a := bE] := 0

(St)[a := bE] := S(t[a := bE])

(Rec t s r)[a := bE] := Rec (t[a := bE]) (s[a := bE]) (r[a := bE])

(µc.k)[a := bE] := µc.k[a := bE]

([a]t)[a := bE] := [b]E[t[a := bE]]

([c]t)[a := bE] := [c]t[a := bE] if c 6= a

We are now ready to define the reduction rules of �µT.

4.2. THE SYSTEM �µT 33

Definition 4.2.8 (Reduction rules of �µT). We define the reduction relation
! as the compatible closure of the following rules:

(�x.t)s !
�

t[x := s]
S(µa.k) !

µS µa.k[a := a (S⇤)]
(µa.k)t !

µR

µa.k[a := a (⇤t)]
µa.[a]t !

µ⌘

t if a 62 FCV(t)
[a]µb.k !

µi

k[b := a ⇤]
Rec t s 0 !0 t

Rec t s (Sn) !S s n (Rec t s n)
Rec t s (µa.k) !

µN

µa.k[a := a (Rec t s ⇤)]

The �µT-calculus fulfills the following important meta-theorems, proofs
for all of which can be found in [16].

Theorem 4.2.9 (Subject reduction). The �µT-calculus satisfies subject re-
duction, i.e., if �;� ` t : ⌧ and t ! t0, then �;� ` t0 : ⌧ .

Theorem 4.2.10 (Confluence). The reduction relation ! is confluent, i.e.,
if t

1

⇣ t
2

and t
1

⇣ t
3

, then there is a term t
4

such that t
2

⇣ t
4

and t
3

⇣ t
4

.

t
1

t
2

t
3

t
4

Theorem 4.2.11 (Strong normalization). �µT is strongly normalizing: If
�;� ` t : �, then there is no infinite reduction chain

u = u
1

! u
2

! u
3

! · · ·

Chapter 5

Arithmetic with exceptions:
HA + EM1

In this chapter we present Aschieri and Berardi’s system HA+ EM
1

[6], and
show its strong normalization, using a new proof method by Aschieri [3]. The
system is an extension of Heyting arithmetic with a restricted version of the
law of the excluded middle, EM

1

, which allows us to use in our proofs all
disjunctions of the form 8↵.P (↵) _ 9↵.¬P (↵), where P is an atomic formula.

There are multiple reasons for choosing the restricted version EM
1

. In
contrast to the full EM, the truth of EM

1

can be computed in the limit, in the
sense of Gold [19]. Every time an instance P (n) of the hypothesis 8↵.P (n)
is used, it can e↵ectively be checked whether this instance is true or not. If
it is not, then we are immediately provided with a witness for the truth of
9↵.¬P (↵).

Furthermore, many important classical theorems of mathematics can be
proved with only EM

1

[1, 10].

5.1 Post rules

Since we will describe a mathematical theory we need an atomic language and
non-logical axioms. The computations that we are interested in are not the
ones that happen at the atomic level, so therefore we will not bother with
actually describing it. Instead, we will use Post rules as in [34] to cover up the
computations happening at the atomic level, in order to simplify the low-level
reasoning.

Definition 5.1.1. A Post rule is an inference rule of the form

P
1

P
2

· · · P
n

Q

35

36 CHAPTER 5. ARITHMETIC WITH EXCEPTIONS: HA+ EM
1

where P
1

,P
2

, . . . ,P
n

,Q are atomic formulas, such that for every substitution
� = [↵

1

:= n
1

,↵
2

:= n
2

, . . . ,↵
k

:= n
k

], P
1

� ⌘ · · · ⌘ P
n

� ⌘ True implies
Q� ⌘ True.

Since we work in arithmetic, we will assume there to be Post rules for every
purely universal arithmetical fact that holds in the standard model of PA, i.e.
facts of the form

8~x(P
1

(~x) ^ · · · ^ P
n

(~x) ! Q(~x)),

where P
i

, Q are atomic formulas. This includes all the Peano axioms except
for the induction axiom scheme. We have, for example, the axioms of equality:

(refl)
eq(t, t)

eq(t
1

, t
2

) eq(t
2

, t
3

)
(trans)

eq(t
1

, t
3

)

eq(t
1

, t
2

) P[↵ := t
1

]
(congP)

P[↵ := t
2

]

And the Peano axioms for the successor:

eq(St
1

,St
2

)
(succ

1

)
eq(t

1

, t
2

)

eq(0,St)
(succ

2

)?

where ? is the false relation, for which we have the ex falso Post rule

?
P

This rule is what makes our system intuitionistic, by making the ex falso rule
admissible to the system.

Also, we have Post rules for all defining axioms of each primitive recursive
relation, e.g.

add(t, 0, t)
add(t

1

, t
2

, t
3

)

add(t
1

,St
2

,St
3

)

mult(t, 0, 0)
mult(t

1

, t
2

, t
3

) add(t
1

, t
3

, t
4

)

mult(t
1

,St
2

, t
4

)

A trick that we will make use of below is to weaken a Post rule. Given a rule

P
1

P
2

· · · P
n

Q

it can be useful to add an irrelevant premise, such that it becomes

P
1

P
2

· · · P
n

S
Q

The reason for using Post rules is that we then do not have to bother with
low-level reasoning and computation. The idea is, that whenever a Post rule is
used in a proof, it could be replaced by a computation in a simple programming
language, like �T.

5.2. HA 37

5.2 HA

We can now definasdfe the first-order system of Heyting arithmetic, HA, which
will be used as the basis on which we can add classical reasoning.

To start with, we formally fix the language.

Definition 5.2.1 (Variables). We have two di↵erent types of variables:

• Numerical variables, ↵,�, �, representing natural numbers.

• Proof term variables, x, y, z, which correspond to the usual lambda
calculus variables.

Definition 5.2.2 (Formulas of HA). We define the language L of HA.

1. The terms in L:
t, r ::= 0 | St | ↵

where ↵ ranges over numerical variables. A numeral is a closed term,
i.e., a term of the form S · · ·S0.

2. There is an atomic formula P(t
1

, . . . , t
n

) for each primitive recursive
relation P ✓ Nn. If P(~t) is a closed atomic formula, i.e., all t

i

are
numerals, then we can write either P(~t) ⌘ True or P(~t) ⌘ False if ~t 2 P
or ~t 62 P , respectively.

3. The formulas, ', , ✓, are built from atomic formulas by the connectives
_,^,!, 8, 9 as usual, with quantifiers ranging over numeric variables
↵,�, �,

The negation of an atomic formula P?(~t) is defined as the atomic formula
representing the complementing primitive recursive relation Nn \ P , while the
negation of a non-atomic formula ¬' is defined in the usual way as ' ! ?,
where ? is the atom representing the empty relation. Notice that negation of
atoms is an involution: (P?)? ⌘ P.

Definition 5.2.3 (Free variables). Given a formula ', the set FV(') is defined
as the set of numerical variables occurring in ' that are not bound by any
quantifiers.

Definition 5.2.4 (Capture avoiding substitution in formulas of HA). Let t, r
be terms of L and ↵ a numerical variable. We firstly define r[↵ := t], r with t
substituted for ↵, recursively on r as follows:

• 0[↵ := t] := 0,

• (Sr)[↵ := t] := Sr[↵ := t],

• ↵[↵ := t] := t,

38 CHAPTER 5. ARITHMETIC WITH EXCEPTIONS: HA+ EM
1

• �[↵ := t] := �.

Let now ' be any formula. We define ' with t substituted for ↵, '[↵ := t],
recursively on ' as follows:

• P(t
1

, . . . , t
n

)[↵ := t] := P(t
1

[↵ := t], . . . , t
n

[↵ := t]),

• (' _)[↵ := t] := '[↵ := t] _ [↵ := t],

• (' ^)[↵ := t] := '[↵ := t] ^ [↵ := t],

• ('!)[↵ := t] := '[↵ := t] ! [↵ := t],

• (8↵.')[↵ := t] := 8↵.',

• (8�.')[↵ := t] := 8�.'[↵ := t],

• (9↵.')[↵ := t] := 9↵.',

• (9�.')[↵ := t] := 9�.'[↵ := t].

Definition 5.2.5 (Proof terms of HA). The untyped proof terms in HA are
the following:

u, v, w := x | uv | un | �xu | �↵u
| hu, vi | ⇡

0

u | ⇡
1

u | ◆
0

u | ◆
1

u
| u[x.v, y.w] | (n, u) | u[(↵, x).v]
| Rec u v n | r u

1

· · · u
m

where x, y range over proof term variables and n over L-terms. The term r

will be used to represent usages of Post rules.

Definition 5.2.6 (Capture avoiding substitution in terms of HA). We define
two notions of capture free substitution in terms of HA: Let u, v be terms of
HA, t a term of L, ↵ a numerical variable and x a �-variable. We define the
notions u[x := v] and u[↵ := t] in the standard way.

Definition 5.2.7 (Typing judgments in HA). An environment, �, in HA is a
finite set of pairs of distinct �-variables and types. It is typically written on
the form � = x

1

: '
1

, . . . , x
n

: '
n

.
A typing judgment is a triple of the form � ` u : ', and we use it to

mean that there exists a derivation using the typing rules from Figure 5.1 with
� ` u : ' at the root.

The following lemma tells us that we can encode any quantifier-free formula
into an atom, if we wish.

Lemma 5.2.8. Let ' be a quantifier-free formula. There is an atomic formula
P such that ` '$ P.

5.2. HA 39

Axioms:
�, x : ' ` x : '

Conjunction:

� ` u : ' � ` v :

� ` hu, vi : ' ^
� ` u : ' ^
� ` ⇡

0

u : '
� ` u : ' ^
� ` ⇡

1

u :

Implication:

�, x : ' ` u :
� ` �xu : '!

� ` u : '! � ` v : '
� ` uv :

Disjunction:

� ` u : '
� ` ◆

0

u : ' _
� ` u :

� ` ◆
1

u : ' _

� ` u : ' _ �, x : ' ` v
1

: ✓ �, x : ` v
2

: ✓

� ` u[x.v
1

, x.v
2

] : ✓

Universal quantification:

� ` u : '
� ` �↵u : 8↵.'

� ` u : 8↵.'(↵)
� ` ut : '(t)

where t is any term of L and ↵ does not occur free in any formula in �.

Existential quantification:

� ` u : '[↵ := t]

� ` (t, u) : 9↵.'
� ` u : 9↵.' �, x : A ` v : ✓

� ` u[(↵, x).v] : ✓

where t is a term of L and ↵ is not free in ✓ nor in any formula in �.

Induction:

� ` u : '(0) � ` v : 8↵.'(↵) ! '(S↵)

� ` Recu v t : '(t)

where t is any term of L.

Post rules:

� ` u
1

: P
1

� ` u
2

: P
2

· · · � ` u
n

: P
n

� ` r u
1

u
2

· · · u
n

: Q

where P
1

, . . . ,P
n

,Q are atomic formulas and the rule is a Post rule in arithmetic.
If there are no premises to the rule, we will write True instead of r.

Figure 5.1: Typing rules for HA

40 CHAPTER 5. ARITHMETIC WITH EXCEPTIONS: HA+ EM
1

Proof. The proof is by induction on the complexity of '. By definition, the
atomic case is trivial. For ' ^ , there are primitive recursive relations P

1

,P
2

corresponding to ' and respectively. Define P as the primitive recursive
relation that is true whenever both P

1

and P
2

are true. Similarly with _. For
' ! , define P as the relation that is true when P

2

is true, or when P
1

is
false.

Reduction for HA

Definition 5.2.9 (Reduction rules for HA). We define the reduction relation
!HA as the compatible closure of the following reduction rules:

(�x.u)t !
�1 u[x := t]

(�↵.u)t !
�2 u[↵ := t]

⇡
0

hu
0

, u
1

i !
⇡0 u

0

⇡
1

hu
0

, u
1

i !
⇡1 u

1

◆
0

(u)[x
1

.t
1

, x
2

.t
2

] !
◆0 t

0

[x
0

:= u]
◆
1

(u)[x
1

.t
1

, x
2

.t
2

] !
◆1 t

1

[x
1

:= u]
(n, u)[(↵, x).v] !9 v[↵ := n][x := u], for each numeral n

Rec u v 0 !
Rec1 u

Rec u v (Sn) !
Rec2 v n (Rec u v n)

The following lemma tells us that the logic is indeed intuitionistic.

Lemma 5.2.10 (Ex falso quodlibet). There exist a term efq
'

for any formula
' such that

` efq
'

: ? ! '.

Proof. We show this by induction on the complexity of the formula '.

• ' = P (atomic): Since we have the Post rule

?
P

for any atomic formula P we have the following derivation:

x : ? ` x : ?
x : ? ` rx : P

` �x.rx : ? ! P

so efqP := �x.rx.

• ' =
1

^
2

: Let efq
 1^ 2

:= �x hefq
 1

x, efq
 2

xi, for

x : ? ` efq
 1

x :
1

x : ? ` efq
 2

x :
2

x : ? ` hefq
 1

x, efq
 2

xi :
1

^
2

` �x hefq
 1

x, efq
 2

xi : ? !
1

^
2

5.3. HA+ EM
1

41

• ' =
1

!
2

: Let efq
 1! 2

:= �x�y efq
 2

x, for

x : ?, y :
1

` efq
 2

x :
2

x : ? ` �y efq
 2

x :
1

!
2

` �x�y efq
 2

x : ? !
1

!
2

• ' = 8↵ : Similarly, let efq8↵ := �x�↵ efq

x.

• ' =
1

_
2

: Let efq
'

= �x ◆
0

(efq
 1
x):

x : ? ` efq
 1
x :

1

x : ? ` ◆
0

(efq
 1
x) :

1

_
2

` �x ◆
0

(efq
 1
x) : ? !

1

_
2

• ' = 9↵ : Let efq9↵ = �x (0, efq
 [↵

:

=0]x):

x : ? ` efq
 [↵

:

=0]x : [↵ := 0]

x : ? ` (0, efq
 [↵

:

=0]x) : 9↵
` �x (0, efq

 [↵

:

=0]x) : ? ! 9↵

5.3 HA+ EM1

The system HA + EM
1

, introduced by Aschieri, Berardi and Birolo in [6],
arises from HA by adding a limited amount of classical reasoning, namely the
EM

1

-rule, the law of excluded middle restricted to ⇧0

1

-formulas. Often, one
sees the law of excluded middle defined as a rule of the form

' _ ¬'

But since this classical axiom does not contain any computational content by
itself, we will instead combine it with the disjunction elimination rule to obtain
an elimination rule of the form

[']

...

[¬']
...

Since we will only consider the restricted EM
1

-rule, we can instead of ' and
¬' consider the formulas 8↵.P(↵) and 9↵.P?(↵). Because of Lemma 5.2.8 we
can restrict ourselves to formulas of the form 8↵.P(↵) instead of 8↵.'(↵) with
quantifier free '.

42 CHAPTER 5. ARITHMETIC WITH EXCEPTIONS: HA+ EM
1

The informal computational intuition behind this proof rule is roughly the
following: We start by assuming the truth of 8↵.P(↵), and then each time
we need the truth of an instance P(n) of the assumption, we check whether
it is true or not; if it is true, then we continue, if it is not, we have found a
witness for 9↵.P?(↵) which we can then fill in in the right-hand-side of the
proof. The crucial observation is then that we will only ever need a finite
number of instances of 8↵.P(↵) to prove '.

Definition 5.3.1 (Variables in HA+EM
1

). We will operate with three di↵erent
types of variables:

• Numerical variables, ↵,�, �, to represent natural numbers.

• Proof term variables, x, y, z, that act like usual lambda calculus variables.

• Hypothesis variables, a, b, c, which act as addresses to refer to uses of
EM

1

hypotheses.

Definition 5.3.2 (Formulas of HA + EM
1

). The atomic language and the
formulas of HA+ EM

1

are the same as for HA, see Definition 5.2.2.

The proof terms of HA+ EM
1

are similar to those of HA, except we add
terms to take care of EM

1

hypotheses.

Definition 5.3.3 (Proof terms of HA+ EM
1

). The untyped proof terms are
the following:

u, v, w ::= x | uv | um | �xu | �↵u | hu, vi | ⇡
0

u | ⇡
1

u | ◆
0

u | ◆
1

u

| u[x.v, y.w] | (m,u) | u[(↵, x).v] | u k
a

v | H8↵.P(↵)
a

| W9↵.P?
(↵)

a

| Rec u v m | r u
1

. . . u
n

where x, y range over proof term variables, a over hypothesis variables and m
over L-terms. In terms of the form u k

a

v we assume that a only occurs free in

u in subterms of the form H
8↵.P(↵)
a

, and in v in subterms of the form W
9↵.P?

(↵)

a

.
If r occurs as a subterm without any accompanying u’s, we will instead write
True.

Definition 5.3.4 (Capture avoiding substitution, witness substitution). We
define the substitutions u[↵ := t] and u[x := v] like in HA. We also define
witness substitution: Let u be a term and n a numeral. Define u[a := n]

as the term obtained from replacing each subterm W
9↵.P?

(↵)

a

by (n, True) if
P?(n) ⌘ True (i.e. if n is a valid witness for the existential statement), and by

(n, H8↵.eq(↵,0)
a

S0) otherwise.

5.3. HA+ EM
1

43

Axioms:
�;�, a : 8↵.P(↵) ` H

8↵.P(↵)
a

: 8↵.P(↵)
�;�, a : 9↵.P?(↵) ` W

9↵.P?
(↵)

a

: 9↵.P?(↵)

EM
1

:

�;�, a : 8↵.P ` u : ' �;�, a : 9↵.P? ` v : '

�;� ` u k
a

v : '

Figure 5.2: Typing rules for EM
1

Definition 5.3.5 (Typing judgments of HA+EM
1

). Environments in HA+EM
1

are bipartite: They consist of a set � similar to the environments from HA
consisting of �-variables and types, and then a set � with pairs of hypothesis
variables and formulas. We write �;� where � = x

1

: '
1

, . . . , x
n

: '
n

and
� = a

1

:
1

, . . . , a
m

:
m

.

We write the typing judgment �;� ` u : ' where �;� is an environment,
u a HA+ EM

1

-term and ' a formula, to mean that there is a derivation using
the typing rules from Figure 5.1 (where the content of � is irrelevant) and
from Figure 5.2.

Definition 5.3.6 (Free variables). We define FV(u) to be the set of free
�-variables in u, FNV(u) to be the set of free numeric variables and FCV(u)
to be the set of free hypothesis-variables in u, where a hypothesis variable a is

said to be free if there is a subterm of the form H
8↵.P(↵)
a

or W9↵.P
?
(↵)

a

not in the
scope of k

a

.

The free numeric variables of H8↵.P(↵)
a

and W
9↵.P?

(↵)

a

are the free numeric
variables of P minus ↵.

44 CHAPTER 5. ARITHMETIC WITH EXCEPTIONS: HA+ EM
1

Reduction for HA+ EM
1

Definition 5.3.7 (Reduction rules for HA+ EM
1

). We define the reduction
relation !HA+EM1 as the compatible closure of the following reduction rules:

(�x.u)t !
�1 u[x := t]

(�↵.u)t !
�2 u[↵ := t]

⇡
0

hu
0

, u
1

i !
⇡0 u

0

⇡
1

hu
0

, u
1

i !
⇡1 u

1

(◆
0

u)[x
0

.v
0

, x
1

.v
1

] !
◆0 v

0

[x
0

:= u]
(◆

1

u)[x
0

.v
0

, x
1

.v
1

] !
◆1 v

1

[x
1

:= u]
(n, u)[(↵, x).v] !9 v[↵ := n][x := u], for each numeral n

Rec u v 0 !
Rec1 u

Rec u v (Sn) !
Rec2 v n (Rec u v n)

(u k
a

v)w !
perm1

uw k
a

vw
⇡
i

(u k
a

v) !
perm2

⇡
i

u k
a

⇡
i

v
(u k

a

v)[x.w
1

, y.w
2

] !
perm3

u[x.w
1

, y.w
2

] k
a

v[x.w
1

, y.w
2

]
(u k

a

v)[(↵, x).w] !
perm4

u[(↵, x).w] k
a

v[(↵, x).w]

H
8↵.P(↵)
a

n !EM11
r, if P(n) = True

u k
a

v !EM12
u, if a does not occur free in u

u k
a

v !EM13
v, if a does not occur free in v

u k
a

v !EM14
v[a := n], if H8↵.P(↵)

a

n occurs in u
and P(n) = False

Definition 5.3.8 (Normal forms). Define NF to be the set of all proof terms
in normal form, and SN to be the set of strongly normalizing proof terms. We
say that a term is in Post normal form if it is recursively built up with r and

H
8↵.P(↵)
a

n, where n is a numeral, as follows:

p ::= r p · · · p | H8↵.P(↵)
a

n.

A term in Post normal form represents a derivation that only consists of Post
rules and instances of a universal hypothesis. We use PNF to refer to the set
of terms in Post normal form.

Example 5.3.9. We will see how we can perform proofs by contradiction in this
system. Classically, we are used to be able to reason like this:

�, 8↵P? ` ?
� ` 9↵P

In the current system, we can do this with the following derivation:

�, a : 8↵P? ` efq9↵ P : ? ! 9↵P �, a : 8↵P? ` u : ?
�, a : 8↵P? ` efq9↵ P u : 9↵P �, a : 9↵P ` W

9↵ P
a : 9↵P

� ` efq9↵ P u ka W

9↵ P
a : 9↵P

5.4. THE SYSTEM HA+ EM⇤
1

45

Axioms:
�;�, a : 8↵.P(↵) ` H8↵.P(↵) : 8↵.P(↵)

�;�, a : 9↵.P?(↵) ` W9↵.P
?
(↵) : 9↵.P?(↵)

EM⇤
1

:

�;�, a : 8↵P(↵) ` u : ' �;�, a : 9↵P?(↵) ` v : '

�;� ` u k v : '

Figure 5.3: Typing rules for EM⇤
1

5.4 The system HA+ EM⇤
1

In order to show strong normalization of HA + EM
1

, we will introduce the
system HA + EM⇤

1

of [3] which is a very slight alteration of HA + EM
1

, and
the strong normalization of HA+ EM⇤

1

will imply the strong normalization of
HA+EM

1

. The only di↵erence in the terms are that we discard the hypothesis
variables in the terms that has to do with EM

1

.
The method we use to show strong normalization of HA+EM⇤

1

is Aschieri’s
[3] adaption of the strong normalization proofs of �! and System F in [17],
that uses the idea of an abstract notion called reducibility, originally due to
Tait [39].

Definition 5.4.1 (Proof terms of HA + EM⇤
1

). The terms of HA + EM⇤
1

are
given by the following grammar

t, u, v ::= x | tu | tm | �xu | �↵u | ht, ui | ⇡
0

u | ⇡
1

u | ◆
0

(u) | ◆
1

(u)

| t[x.u, y.v] | (m, t) | t[(↵, x).u] | u k v | H8↵.P(↵)

| W9↵.P?
(↵) | Recuvm | r t

1

. . . t
n

where x, y range over proof term variables and m over L-terms.

Definition 5.4.2 (Typing judgments of HA+EM⇤
1

). Environments in HA+EM⇤
1

are like in HA+ EM
1

. We write the typing judgment �;� ` u : ' where �;�
is an environment, u a HA+ EM⇤

1

-term and ' a formula, to mean that there is
a derivation using the typing rules from Figure 5.1 and from Figure 5.3.

Definition 5.4.3 (Reduction rules for HA + EM⇤
1

). The reduction rules for
HA + EM⇤

1

are almost the same as for HA + EM
1

. We will only change the
EM

1

-reduction rules:

H8↵.P(↵) n EM⇤
11

True, if P(n) ⌘ True

u k v EM⇤
12

u

u k v EM⇤
13

v

W9↵.P
?
(↵) EM⇤

14
(n, True), for every numeral n

46 CHAPTER 5. ARITHMETIC WITH EXCEPTIONS: HA+ EM
1

Let be the compatible closure of the HA reduction rules, the permutation
rules, and the above four rules. We use + to refer to the transitive closure
and ⇤ to refer to the reflexive-transitive closure.

Since EM⇤
14

spans every natural number, the reduction trees in HA+EM⇤
1

will not necessarily be finite (because there will be ! choices for each EM⇤
1

4

-
reduction), but they will still be well-founded, in the sense that they will have no
infinite branches. To terms in SN we will assign an ordinal number to each node
in the tree, a height h(t), such that if t t0, then h(t) > h(t0) [22, Theorem
2.27].

We will define a translation from HA+ EM
1

terms into HA+ EM⇤
1

terms in
the obvious way.

Definition 5.4.4 (Translation of HA+EM
1

-terms into HA+EM⇤
1

-terms). We
define the translation ·⇤ mapping proof terms of HA+ EM

1

into proof terms of
HA+ EM⇤

1

.
x⇤ 7! x

(tu)⇤ 7! t⇤u⇤

(tm)⇤ 7! t⇤m
(�x.u)⇤ 7! �x.u⇤

(�↵.u)⇤ 7! �↵.u⇤

hu, vi⇤ 7! hu⇤, v⇤i
(⇡

i

u)⇤ 7! ⇡
i

u⇤

(◆
i

u)⇤ 7! ◆
i

u⇤

(t[x.u, y.v])⇤ 7! t⇤[x.u⇤, y.v⇤]
(Rec u v m)⇤ 7! Rec u⇤ v⇤ m
(r t

1

· · · t
n

)⇤ 7! r t⇤
1

· · · t⇤
n

(u k
a

v)⇤ 7! u⇤ k v⇤

(H8↵.P(↵)
a

)⇤ 7! H8↵.P(a)

(W9↵.P
?
(↵)

a

)⇤ 7! W9↵.P
?
(↵)

Basically, by applying ·⇤ to a term, you erase all hypothesis variables from the
term.

The following lemma is crucial, since it will allow us to transfer a termination
result about HA+ EM⇤

1

to one about HA+ EM
1

.

Lemma 5.4.5 (Preservation of ! by). Let v be a HA + EM
1

-term such
that v ! w. Then v⇤ + w⇤.

Proof. In order to show that this holds for all such v it is su�cient to show
that it holds for all redexes. All of them, except EM

1

4

are straight-forward, so
we only show a few of them.

• (�x.u)t !
�1 u[x := t]. We see that

((�x.u)t)⇤ = (�x.u⇤)t⇤ u⇤[x := t⇤] = (u[x := t])⇤.

5.5. STRONG NORMALIZATION FOR HA+ EM⇤
1

AND HA+ EM
1

47

• (u k
a

v)[x.w
1

, y.w
2

] !
perm3

u[x.w
1

, y.w
2

] k
a

v[x.w
1

, y.w
2

]. We see that

((u k
a

v)[x.w
1

, y.w
2

])⇤ = (u⇤ k v⇤)[x.w⇤
1

, y.w⇤
2

]

 u⇤[x.w⇤
1

, y.w⇤
2

] k v⇤[x.w⇤
1

, y.w⇤
2

] = (u[x.w
1

, y.w
2

] k
a

v[x.w
1

, y.w
2

])⇤

• u k
a

v !EM14
v[a := n]. First we see that

(u k
a

v)⇤ = u⇤ k v⇤ v⇤.

But this v⇤ may still contain subterms of the form W9↵.P
?
(↵). For each of

these subterms we apply EM14
, replacing each W9↵.P

?
(↵) with (n, True):

v⇤ ⇤ (v[a := n])⇤.

5.5 Strong normalization for HA+ EM⇤
1 and

HA+ EM1

We aim to prove strong normalization for HA+ EM⇤
1

. For this, we define the
following abstract reducibility relation.

Definition 5.5.1 (Reducibility). We define a relation red between HA+ EM⇤
1

-
terms and formulas of L. We read t red ' as t is reducible of type '.

1. t red P if and only if t 2 SN;

2. t red ' ^ if and only if ⇡
0

t red ' and ⇡
1

t red ;

3. t red '! if and only if u red ' implies tu red for all u;

4. t red ' _ if and only if

• t 2 SN,

• if t ⇤ ◆
0

u, then u red ',

• if t ⇤ ◆
1

u, then u red ;

5. t red 8↵.'(↵) if and only if tn red '(n) for all terms n of L;

6. t red 9↵.'(↵) if and only if

• t 2 SN,

• for every term n of L, if t ⇤ (n, u), then u red '(n).

Definition 5.5.2 (Neutrality). A proof term is said to be neutral if it is not
of one of the following forms:

�↵.u, �x.u, hu, vi, ◆
i

u, (t, u), H8↵.P(↵), u k v.

48 CHAPTER 5. ARITHMETIC WITH EXCEPTIONS: HA+ EM
1

Lemma 5.5.3 (Reducibility candidates). Let t be a HA+ EM⇤
1

-term. Then it
has the following four properties:

(CR1) If t red ', then t 2 SN;

(CR2) If t red ' and t ⇤ t0, then t0 red ';

(CR3) If t is neutral and if t t0 implies t0 red ' for every t0, then t red ';

(CR4) u k v red ' if and only if u red ' and v red '.

Proof. We proceed by induction on the complexity of '.

• ' = P. If t red P, then t 2 SN.

(CR1) t 2 SN since t red P.

(CR2) Again, t 2 SN, so if t ⇤ t0 then also t0 2 SN and thus t0 red P.

(CR3) If t0 red P and t t0, then also t 2 SN and thus t red P.

(CR4) u k v 2 SN if and only if u 2 SN and v 2 SN.

• ' = ! ✓.

(CR1) Suppose that t red ! ✓. Firstly, notice that CR3 implies that
any neutral term in normal form will be a reducibility candidate
for anything. Thus, by induction hypothesis for CR3, we have that
x red for any variable x, so tx red ✓, and by induction hypothesis
for CR1, tx 2 SN. Therefore tx 2 SN.

(CR2) Suppose that t red ! ✓, t ⇤ t0 and u red . We need to
show that t0u red ✓. We know that tu red ✓, so since tu ⇤ t0u, the
induction hypothesis of CR2 gives us that t0u red ✓.

(CR3) Suppose that t is neutral, and that t t0 implies t0 red ! ✓.
We need to show that tu red ✓ for any u such that u red . Suppose
that such a u is given. By the induction hypothesis for CR1 we
know that u 2 SN. By induction on the height h(u) we will show
that tu red ✓.

By the induction hypothesis for CR3 it is su�cient to show that
tu v implies v red ✓. Since t is neutral, v can either be t0u where
t t0, or tu0 where u u0. In the first case, then t0 red ! ✓
by hypothesis, so t0u red ✓. In the second case, u0 red by the
induction hypothesis for CR2, and since h(u0) < h(u), we have that
tu0 red ✓ by the induction hypothesis for the height.

(CR4) ()) Since we have proven CR2 for ! ✓ we can use it now:
We have that u k v u and u k v v, so u red ! ✓ and
v red ! ✓.

5.5. STRONG NORMALIZATION FOR HA+ EM⇤
1

AND HA+ EM
1

49

(() We suppose that u red ! ✓ and v red ! ✓. Let w be given
such that w red . By CR1 u, v, w 2 SN, so we can proceed by
induction on the heights h(u), h(v), h(w) to show that (u k v)w red ✓.
Again, we use the induction hypothesis for CR3, so it is su�cient
to show that (u k v)w r implies that r red ✓. There are the
following possibilities for r:

1. r is uw or vw;

2. r is (u0 k v)w, (u k v0)w or (u k v)w0, where u u0, v v0 and
w w0;

3. r is uw k vw.

In the first case uw, vw red ✓, so we are done. For the second
case, we look at (u0 k v)w, the others are analogous. By CR2
we have that u0 red ! ✓, and since h(u0) < h(u) we get by
induction hypothesis that (u0 k v)w red ✓. In the last case, we use
the induction hypothesis for CR4.

• ' = 8↵. (↵) or ' = ^ ✓. These cases are analogous to ' = ! ✓.

• ' = 9↵. (↵).

(CR1) If t red 9↵. (↵), then t 2 SN.

(CR2) Suppose t red 9↵. (↵) and t ⇤ t0. Then t 2 SN, so also t0 2 SN.
Let n be a numeric term. If t0 ⇤ (n, u), then also t ⇤ (n, u) and
therefore u red (n).

(CR3) Suppose t is neutral and that t t0 implies t0 red 9↵. (↵). We
have t 2 SN, because if t t0 then t0 2 SN. Let n be a numeric
term and suppose that t ⇤ (n, u). Since t is neutral, and thus
di↵erent from (n, u), there must be at least one step in the reduction:
t t0 ⇤ (n, u), and so u red (n).

(CR4) ()) From u k v u, u k v v and CR2 we get that u red
9↵. (↵) and v red 9↵. (↵).
(() Suppose u red 9↵. (↵) and v red 9↵. (↵). Then u, v 2 SN and
therefore u k v 2 SN. If u k v ⇤ (n,w), then we must have at least
one of u k v u ⇤ (n,w) or u k v v ⇤ (n,w). In either case,
we have w red (n).

• ' = _ ✓. This case is analogous to the case with ' = 9↵. (↵).

The following facts are useful for the proof of the main Adequacy Theorem.

Lemma 5.5.4. 1. Suppose that t red
0

_
1

, and that u
0

, u
1

are terms
such that, for every v such that v red

1

, it holds that u
i

[x := v] red '.
Then t[x.u

0

, x.u
1

] red '.

50 CHAPTER 5. ARITHMETIC WITH EXCEPTIONS: HA+ EM
1

2. Suppose that u[x := v] red for every v such that v red '. Then
�x.u red '! .

3. If, for every numeric term n, it holds that u[↵ := n] red '(n), then
�↵.u red 8↵.'(↵).

Proof. For the proofs of these facts, we refer to [3] and [17].

The following Adequacy Theorem tells us—roughly— that we can pass
from ` to red.

Theorem 5.5.5 (Adequacy Theorem). Let '(↵
1

, . . . ,↵
k

) be a formula, let u
be a HA+ EM⇤

1

-term, and let

� = x
1

: '
1

(↵
1

, . . . ,↵
k

), . . . , x
n

: '
n

(↵
1

, . . . ,↵
k

)

such that no formula in � nor ' has more free variables than ↵
1

, . . . ,↵
k

. Let
also � be given, and assume that �;� ` u : '. Now suppose that there for all
numeric terms m

1

, . . . ,m
k

are terms t
1

, . . . , t
n

such that

t
i

red '
i

(m
1

, . . . ,m
k

) for i = 1, . . . , n.

Then

u[x
1

:= t
1

, . . . , x
n

:= t
n

][↵
1

:= m
1

, . . . ,↵
k

:= m
k

] red '(m
1

, . . . ,m
k

).

Proof. For the sake of readability, we will introduce the following notation:

t̄ := t[x
1

:= t
1

, . . . , x
n

:= t
n

][↵
1

:= m
1

, . . . ,↵
k

:= m
k

]

✓̄ := ✓(m
1

, . . . ,m
k

)

The proof proceeds by induction on u. We look at the last applied rule in the
derivation of �;� ` u : '.

Axioms:

• Last rule is �;� ` x
i

: '
i

. Then x̄
i

= t
i

and '̄
i

= '
i

(m
1

, . . . ,m
k

), and
so x̄

i

red '̄
i

by hypothesis.

• Last rule is �;� ` H8↵.P(↵) : 8↵.P(↵). Then ū = H8↵.
¯P(↵) and '̄ =

8↵.P̄(↵). For any numeric term n, ūn 2 SN, so ūn red P̄(n). Thus
ū red '̄.

• Last rule is �;� ` W9↵.P
?
(↵) : 9↵.P?(↵). Then ū = W9↵.

¯P?
(↵) and

'̄ = 9↵.P̄?(↵). We have ū 2 SN, and for every numeral n we have
ū (n, True), and we also have True red P̄?(n). Thus, we get ū red '̄.

5.5. STRONG NORMALIZATION FOR HA+ EM⇤
1

AND HA+ EM
1

51

Conjunction:

• If the last rule is a conjunction introduction rule, then u = hv, wi and
' = ^ ✓, with �;� ` v : and �;� ` w : ✓; thus ū = hv̄, w̄i and
'̄ = ̄ ^ ✓̄. By the induction hypothesis, v̄ red ̄ and w̄ red ✓̄, and we
have to show that ⇡

0

hv̄, w̄i red ̄ and ⇡
1

hv̄, w̄i red ✓̄. Notice that ⇡
0

hv̄, w̄i
is a neutral term, and that there are the following possible reductions:

⇡
0

hv̄, w̄i v̄, ⇡
0

hv̄, w̄i ⇡
0

hv̄0, w̄i, ⇡
0

hv̄, w̄i ⇡
0

hv̄, w̄0i,

where v̄ v̄0 and w̄ w̄0. Using that the reduction trees are always well-
founded, we can argue by double induction on the heights h(v̄), h(w̄) that
if ⇡

0

hv̄, w̄i t, then t red ̄. Therefore, using CR3, we get ⇡
0

hv̄, w̄i red ̄.
Similarly for ⇡

1

hv̄, w̄i red ✓̄. Hence, hv̄, w̄i red ̄ ^ ✓̄.

• If the last rule is a conjunction elimination rule, like so:

�;� ` v : ' ^
�;� ` ⇡

0

v : '

Then by induction hypothesis, v̄ red '̄ ^ ̄, and therefore, by definition,
⇡
0

v̄ red '̄, as wanted. Similarly for the ⇡
1

-case.

Implication:

• The last rule is implication introduction:

�, x : ;� ` v : ✓
�;� ` �x.v : ! ✓

For showing �x.v̄ red ̄ ! ✓̄, it is by Lemma 5.5.4 su�cient to show that
v̄[x := w] red ✓̄ for every w such that w red ̄. Let such a w be given.
We have

t
i

red '̄
i

for i = 1, . . . , k, and w red ̄,

so by the induction hypothesis we get that v̄[x := w] red ✓̄.

• The last rule is implication elimination:

�;� ` v : ! ' �;� ` w :
�;� ` vw : '

By the induction hypothesis, we have v̄ red ̄ ! '̄ and w̄ red ̄, so by
definition of red we also have v̄w̄ red '̄.

52 CHAPTER 5. ARITHMETIC WITH EXCEPTIONS: HA+ EM
1

Disjunction:

• If the last rule is a disjunction introduction rule, say, without loss of
generality, the left rule

�;� ` v :
�;� ` ◆

0

v : _ ✓

then by induction hypothesis, v̄ red ̄, and therefore, by CR1, v̄ 2 SN.
Since, trivially, ◆

0

v̄ ⇤ ◆
0

v̄, we get ◆
0

v̄ red ̄ _ ✓̄, by the definition of red.

• If the last rule is a disjunction elimination rule:

�;� ` v : _ ✓ �, x : ;� ` w
1

: ' �, x : ✓;� `
�;� ` v[x.w

1

, x.w
2

] : '

Then the induction hypothesis tells us the following: v̄ red ̄ _ ✓̄; for
every t such that t red ̄ we have w̄

1

[x := t] red '; and for every t such
that t red ✓̄ we have w̄

2

[x := t] red '̄. By Lemma 5.5.4, we have that
v̄[x.w̄

1

, x.w̄
2

] red '̄.

Existential quantification: These cases are analogous to the disjunction
cases.

Universal quantification:

• The last rule is universal introduction:

�;� ` v : (↵)
↵ 62 FV(�;�)

�;� ` �↵.v : 8↵. (↵)

We need to show that �↵.v̄ red 8↵. ̄(↵), and by Lemma 5.5.4 it is
su�cient to show that v̄[↵ := t] red ̄(t), for t a numeric term. But we
can assume that ↵ 6= ↵

1

, . . . ,↵
k

, so ̄
i

(↵) = ̄
i

(t) since ↵ is not free in

i

, and thus
t
i

red '̄
i

(t), for i = 1, . . . , k.

Therefore we can apply the induction hypothesis on v and get v̄[↵ :=
t] red ̄(t).

• The last rule is universal elimination:

�;� ` v8↵.'(↵)
�;� ` vt : '(t)

By the induction hypothesis, v̄ red 8↵.'̄(↵), and thus, by definition of
red, v̄t̄ red '̄(t), as needed.

5.5. STRONG NORMALIZATION FOR HA+ EM⇤
1

AND HA+ EM
1

53

Induction: The last rule is the induction rule:

�;� ` v : (0) �;� ` w : 8↵. (↵) ! (S↵)

�;� ` Rec v w t : (t)

We first notice that t̄ = n for some numeral n, so it will su�ce to show
Rec v̄ w̄ n red ̄(n) for all numerals n. Rec v̄ w̄ n is neutral, so by CR3 it is
enough to show

Rec v̄ w̄ n v0 implies v0 red ̄(n).

We will do this by a triple induction on n and the heights h(v̄) and h(w̄). If
n = 0 and Rec v̄ w̄ 0 v̄, then v̄ ̄(0) by the main induction hypothesis.
Suppose n = Sm and

Rec v̄ w̄ (Sm) w̄m(Rec v̄ w̄ m).

By the main induction hypothesis we have w̄ red 8↵. (↵) ! (S↵), and by
the induction hypotheses for n we have that Rec v̄ w̄ m red ̄(m), so therefore

w̄m(Rec v̄ w̄ m red ̄(m)) red (Sm).

In the cases where

Rec v̄ w̄ n Rec v̄0 w̄ n or Rec v̄ w̄ n Rec v̄ w̄0 n,

where v̄ v̄0 and w̄ w̄0, we can apply the induction hypotheses for the
heights.

Post rules: If the last rule is a Post rule, then u = r u
1

· · ·u
l

and �;� ` u : Q,
and since ū

1

, . . . , ū
l

2 SN by the induction hypothesis, then also ū 2 SN, and
so ū red Q̄.

EM⇤
1

: The last rule is

�;�, a : 8↵.P(↵) ` v : ' �;�, a : 9↵.P?(↵) ` w : '

�;� ` v k w : '

By induction hypothesis, v̄ red '̄ and w̄ red '̄, so CR4 gives us that v̄ k w̄ red
'̄.

Corollary 5.5.6 (Strong normalization for HA + EM⇤
1

). If �;� ` u : ' in
HA+ EM⇤

1

, then u 2 SN.

Proof. Suppose �;� ` u : ', with � = x
1

: '
1

, . . . , x
n

: '
n

. Since x
i

are
neutral terms in normal form, CR3 gives us that x

i

red '
i

. Hence, by Adequacy
Theorem 5.5.5, u red ', and therefore, by CR1, u 2 SN.

54 CHAPTER 5. ARITHMETIC WITH EXCEPTIONS: HA+ EM
1

Corollary 5.5.7 (Strong normalization for HA + EM
1

). If �;� ` u : ' in
HA+ EM

1

, then u 2 SN.

Proof. Suppose �;� ` u : ' in HA+ EM
1

. Then we also have �;� ` u⇤ : ' in
HA+ EM⇤

1

. Now, suppose for contradiction that we have an infinite reduction

u = u
1

! u
2

! u
3

! · · · .

By Lemma 5.4.5, this gives rise to an infinite reduction

u⇤ = u⇤
1

 + u⇤
2

 + u⇤
3

 · · · ,

which, by Corollary 5.5.6, is impossible. Therefore, u 2 SN.

5.6 Existential witness property

An important property of the system HA+ EM
1

is the following:

Theorem 5.6.1 (Existential Witness Property). Suppose that

` u : 9↵.P(↵).

Then there is a term (n, u0) in normal form such that u⇣ (n, u0), and P(n) ⌘
True.

This is proved in [6] using Interactive Realizability.

Chapter 6

Programming with terms in
HA + EM1

Since we study the system HA+ EM
1

for the purpose of examining the compu-
tational content of classical proofs, the most natural thing to use the system
for is programming. In this chapter we will study some cases of di↵erent
specifications for which we find terms, and then examine how these behave
computationally.

The purposes with the following two examples are di↵erent: In the first
example we start with a proof and then we turn this into a program and
analyze this. In the second example it is the other way around. We start with
an idea of how we want the program to behave, and then we seek out a proof
that will accommodate this idea.

6.1 Searching

In this situation, we investigate a problem of searching. We imagine that
some decidable unary predicate P and a number n is given, whereof we know
that ¬P (0) and P (n) hold. The problem then consists of finding a number
k between 0 and n such that ¬P (k) and P (k + 1) holds. We will investigate
the computational di↵erences between a term based solely on intuitionistic
reasoning (i.e. a term from HA), and a term that makes use of the EM

1

-rule.

Intuitionistic proof

We first demonstrate how we would solve this problem without the use of any
classical reasoning. Firstly, we fix the atomic formulas that we will use:

P(↵) : holds if P (↵) is true;

Q(↵) : holds if ¬P (↵) ^ P (S↵).

Then there are some Post rules we can make use of. Obviously, we have

55

56 CHAPTER 6. PROGRAMMING WITH TERMS IN HA+ EM
1

P?(↵) P(S↵)

Q(↵)

and since P(↵) is decidable, we also have

P(↵) _ P?(↵)

Next, we formulate our premises:

h
1

: P?(0)

h
2

: P(n).

Proposition 6.1.1. There is a proof term search in in HA such that

h
1

: P?(0), h
2

: P(n) ` search in : 9↵.Q(↵).

We will find the proof term in 3 steps: Firstly, we describe an informal
proof, which we then turn into a formal proof, and lastly we annotate this
proof with proof terms.

Informal proof The proof will be an induction on �, showing that P(�) !
9↵.Q(↵). The base case is then trivial, since we get a contradiction from P?(0)
and P(0) right away. In the induction step we assume P(S�) and consider two
possibilities: If P(�) holds, then 9↵.Q(↵) follows from the IH, and if it does
not then Q(�) holds.

Formal proof We want a proof of P(n) ! 9↵.Q(↵), and we will do this by
induction. From Lemma 5.2.10 we know that we can do ex falso reasoning, so
the base case is just

P?(0) P(0)
?

9↵.Q(↵)
P(0) ! 9↵.Q(↵)

(induction step)

...
8�.((P(�) ! 9↵.Q(↵)) ! P(S�) ! 9↵.Q(↵))

P(n) ! 9↵.Q(↵)

In the induction step we will make use of the Post rules:

P(�) _ P?(�)

P(�) ! 9↵.Q(↵)x P(�)z

9↵.Q(↵)

P?(�)z P(S�)y

Q(�)

9↵.Q(↵)
z

9↵.Q(↵)
y

P(S�) ! 9↵.Q(↵)
x

(P(�) ! 9↵.Q(↵)) ! P(S�) ! 9↵.Q(↵)
8�.((P(�) ! 9↵.Q(↵)) ! P(S�) ! 9↵.Q(↵))

6.1. SEARCHING 57

Proof term By simply annotating the above proof trees, we acquire the
corresponding proof term. The induction step will have the proof term

search in step := ���x�y.True[z.(xz), z.(�, (r z y))]

h
1

: P?(0) ` search in step : 8�.((P(�) ! 9↵.Q(↵)) ! P(S�) ! 9↵.Q(↵))

as can easily be checked (remember that the annotation for a Post rule is True
or r u

1

· · · u
m

). Similarly we find the term for the base case:

search in base := �x.efq9↵.Q(↵)

(r h
1

x)

h
1

: P?(0) ` search in base : P(0) ! 9↵.Q(↵)

We can now put the pieces together to find the sought-after term. The term
Rec search in base search in step n will have the type P(n) ! 9↵.Q(↵).
Therefore the final term will be

search in := Rec search in base search in step n h
2

for then
h
1

: P?(0), h
2

: P(n) ` search in : 9↵.Q(↵).

Classical proof

Now we will try to find another solution to the problem, this time using classical
reasoning, and thus ending up with a program that uses control operators.
We still have the same primitive recursive predicate P , and we also reuse the
atomic formulas:

P(↵) : holds if P (↵) is true;

Q(↵) : holds if ¬P (↵) ^ P (S↵).

Again, this gives rise to some Post rules, and this time we will make use of the
following two:

P?(↵) P(S↵)

Q(↵)

P?(↵) Q?(↵)

P?(S↵)

Proposition 6.1.2. There is a proof term search cl in HA + EM
1

but not
in HA such that

h
1

: P?(0), h
2

: P(n) ` search cl : 9↵.Q(↵).

Again, we will divide the process in three: Firstly, we describe the proof
strategy informally, then we make a formal derivation, and finally we extract
the proof term from this proof.

58 CHAPTER 6. PROGRAMMING WITH TERMS IN HA+ EM
1

Informal proof The proof will take the shape of a contradiction argument.
We want to show that there is an ↵ such that ¬P (↵) ^ P (S↵), so we assume
the opposite: For all ↵, ¬(¬P (↵) ^ P (S↵)). We use this to show 8�¬P (�)
by induction: ¬P (0) is a premise, so assume ¬P (�); if P (S�), then we
have ¬P (�) ^ P (S�) which is in contradiction with our first assumption, so
therefore ¬P (S�) must be the case, so we have 8�¬P (�). This gives us a
contradiction with the premise that P (n) must hold. Therefore we can conclude
9↵¬P (↵) ^ P (S↵).

Formal proof Since the proof is by contradiction, it will have the following
form

[8↵.Q?(↵)]

...
?

9↵.Q(↵) 9↵.Q(↵)
9↵.Q(↵)

where the last rule application is an instance of EM
1

. In the missing part we
fill in the following:

P(n)

P?(0)

(induction step)

...
8�.P?(�) ! P?(S�)

P?(n)

?
In the induction step we make use of a Post rule:

P?(�)

8↵.Q?(↵)

Q?(�)

P?(S�)

P?(�) ! P?(S�)

8�.P?(�) ! P?(S�)

Proof term Since we are using the EM
1

-rule, we will use the terms H8↵.Q
?
(↵)

a

and W
9↵.Q(↵)

a

to refer to the left and right hand side of the EM
1

-disjunction.
The induction step proof tree will correspond to the following term:

search cl step := ���x.r x (H8↵.Q
?
(↵)

a

�),

for then

a : 8↵.Q?(↵) ` search cl step : 8�.P?(�) ! P?(S�).

6.1. SEARCHING 59

We can now use this to annotate the contradiction part of the derivation.
Notice that, since we regard P? as an atomic formula, we will need an r to get
? from P?(n) and P(n) because we use a Post rule from the following scheme
of rules, where S can be any atomic formula:

S S?

?

We get

search cl contr := r h
2

(Rec h
1

search cl step n),

for then

h
1

: P?(0), h
2

: P(n), a : 8↵.Q?(↵) ` search cl contr : ?

and then we reach

search cl := efq9↵.Q(↵)

search cl contr k
a

W9↵.Q(↵)

a

with

h
1

: P?(0), h
2

: P(n) ` search cl : 9↵.Q(↵)

as desired.

Reduction of search cl

In order to visualize how this search term can operate, we will draw a reduction
graph for a simple example. We will need to fix an n and some truth-values
for P . The size of the graph grows very quickly when we increase n, so in
order to keep it simple we will consider the trivial situation where n = 1, and
P (0),¬P (1) holds. This means we have the atomic formulas P(0),P(1), and
Q(0) (where the numbers represent the terms 0 respectively S0).

The term search cl contains �
1

-redexes because of the definition of efq,
and since these in the end will be uninteresting for the computation, we start
by getting rid of these, and instead consider the following term:

(0, r (r h
2

(Rec h
1

search cl step 1))) k
a

W9↵Q(↵)

a

.

All the redexes, except for the ones of the form u k
a

v, will occur inside the
subterm Rec h

1

search cl step 1, and so we can restrict out attention to this.

We will abbreviate some subterms: search cl step with step, and H
8↵Q?

(↵)

a

60 CHAPTER 6. PROGRAMMING WITH TERMS IN HA+ EM
1

with H.

Rec h
1

step 1

step 0 (Rec h
1

step 0)

(�x.r x (H 0
::

))(Rec h
1

step 0) step 0 h
1

r (Rec h
1

step 0) (H 0
::

) (�x.r x (H 0
::

)) h
1

r h
1

(H 0
::

)

The underlined subterms are redexes, and the ones that are underlined with a
wavy line are subterms that makes a EM

1

4

-reduction possible at the root level.
This is where the exceptions can occur, where we can escape the reduction on
the left-hand side, as for example:

(0, r (r h
2

((�x.r x (H 0))(Rec h
1

step 0)))) k
a

W9↵Q(↵)

a

! (0, True).

We will now try and look at a slightly more complicated example. Let
now n = 3, and suppose that ¬P (0), P (1),¬P (2), P (3) holds, thus we have
the atomic formulas: Q(0),Q?(1),Q(2). If we prioritize the Rec

2

-reduction,
then we can do the following reduction:

Rec h
1

step 3⇣ step 2 (step 1 (step 0 h
1

))

⇣ r (r (r h
1

(H 0
::

)) (H 1)) (H 2
::

)

⇣ r (r (r h
1

(H 0
::

)) True) (H 2
::

).

This reduction leaves us with the choice of two exceptional exits, namely

(0, r (r h
2

(r (r (r h
1

(H 0)) True) (H 2)))) k
a

W9↵Q(↵)

a

! (0, True),

and

(0, r (r h
2

(r (r (r h
1

(H 0)) True) (H 2)))) k
a

W9↵Q(↵)

a

! (2, True).

It is clear that we can expand this for any situation: If there are m valid
candidates, then the search term has m di↵erent normal forms. Therefore, this
term cannot be said to contain one search algorithm per se, since the outcome

6.2. MULTIPLICATION EXAMPLE 61

is entirely decided by the reduction strategy. But it does seem that there is a
natural choice to make: The most e�cient way of finding a normal form, will
be to choose the first exceptional exit. In the example, instead of reducing to

r (r (r h
1

(H 0
::

)) True) (H 2
::

),

one could instead just stop the reduction much earlier at

(�x.r x (H 2))(Rec h
1

step 2),

and then do the exceptional exit:

(0, r (r h
2

((�x.r x (H 2))(Rec h
1

step 2)))) k
a

W9↵Q(↵)

a

! (2, True).

Thus, if we can fix a reduction strategy that behaves in this “natural” way,
then the search algorithm we get is top-down search.

6.2 Multiplication example

An example of a computer program that can be made more e�cient with the
use of exception operators is list multiplication. The following is a traditional
implementation of a program that multiplies the elements in a list (here in
Haskell notation):

listmult :: [Integer] -> Integer

listmult [] = 1

listmult (x:xs) = x * (listmult xs)

However, since we know that the product of any list containing a zero will be
zero, we would like the program to stop the calculation as soon as a zero is
encountered. In the traditional implementation this does not happen. The
näıve solution is to add the following pattern matching case to the code:

listmult (0:xs) = 0

But this is not satisfactory, since this does not break the recursion, as the
following calculation example shows:

listmult [3,5,0,3] ! 3 * listmult [5,0,3]

! 3 * (5 * listmult [0,3])

! 3 * (5 * 0)

! 3 * 0

! 0

Notice, that even though we should already know that the result will be 0 after
the third reduction, we continue calculating. One solution to this problem is

62 CHAPTER 6. PROGRAMMING WITH TERMS IN HA+ EM
1

to use an exception operator, which will let us abort the recursion once a zero
is encountered.

We want to find a solution to this problem using HA+ EM
1

, but since this
system does not have any data structure for lists, we will have to reformulate the
problem to a problem of pure arithmetic. Let instead some primitive recursive
function f : N ! N be given (notice that this corresponds to an infinite list).
The product of the list [f(0), f(1), . . . , f(n� 1)] will then be

Q
n

i=1

f(i� 1). It
is clearly a primitive recursive task to decide whether

Q
n

i=1

f(i� 1) = m for
given n and m, so we can push this task to the atomic level and introduce
it as an atomic formula. We will also need to be able to say whether f will
evaluate to zero on a certain input.

M(↵,�) : holds if
↵Y

i=1

f(i� 1) = �

N(↵,�) : holds if f(�) = 0 and � < ↵

For M we have the following Post rules:

M(0, 1)
M(↵,�)

M(S↵, f(↵) ⇤ �)
Notice that we have introduced the symbol ⇤ which stands for multiplication.
How this actually reduces is not really relevant; an answer of the form f(2) ⇤
f(1) ⇤ f(0) is su�ciently informative for our purposes.

Intuitionistic proof

Firstly, we will solve the problem without using classical reasoning, and as we
will see this is quite straightforward.

Proposition 6.2.1. There is a term mult in in HA such that it fulfills the
specification:

` mult in : 8↵9�.M(↵,�).

The proof is a straightforward induction proof, viz.

M(0, 1)

9�.M(0,�)

9�.M(�,�)x

M(�,�)y

M(S�, f(�) ⇤ �)
9�.M(S�,�)

y
9�.M(S�,�)

x
9�.M(�,�) ! 9�.M(S�,�)

8�(9�.M(�,�) ! 9�.M(S�,�))

9�.M(↵,�)

8↵9�.M(↵,�)

By annotating this proof tree we get

mult in := �↵.Rec (1, True) (���x.x[(�, y).(f(�) ⇤ �, r y)]) ↵.

6.2. MULTIPLICATION EXAMPLE 63

Classical proof

Now we want to introduce classical reasoning in such a way that we can break
the recursion once a zero is encountered. We will do this by applying the EM
rule to 8�.N?(↵, �) _ 9�.N(↵, �). The intention is then that the program will
first assume N?, i.e. that all the list values are non-zero, and then execute the
intuitionistic program whilst testing the EM-hypothesis. When this hypothesis
is tested to be false, the program will exit the calculation, learn that N is the
case and with this knowledge return a zero.

Proposition 6.2.2. There is a term mult cl which is in HA+ EM
1

, but not
in HA, such that

` mult cl : 8↵9�.M(↵,�).

The proof will take the following form:

[8�.N?(↵, �)]

...
9�.M(↵,�)

[9�.N(↵, �)]
...

9�.M(↵,�)

9�.M(↵,�)

8↵9�.M(↵,�)

In order to fill in the rest of the proof we will need some Post rules for
N. Given m,n such that m < n and f(m) = 0, it is necessarily true thatQ

n

i=1

f(i� 1) = 0, so therefore we can introduce the following Post rule:

N(↵, �)

M(↵, 0)

This rule is needed for the right hand side of the proof, which can now be
finished:

9�.N(↵, �)
N(↵, �)

M(↵, 0)

M(↵, 0)

9�.M(↵,�)

The proof term for this is

mult cl rhs := (0, W9�.N(↵,�)

a

[(�, x).r x]).

The left hand side is more tricky. Since we do not need the assumption
of 8�.N?(↵, �) for anything, one could initially be tempted to just copy and
paste the original intuitionistic version of the proof here. This, however, is not
the solution we are looking for, since this would give no opportunity to throw
an exception. So we must somehow include the assumption in the proof. One

64 CHAPTER 6. PROGRAMMING WITH TERMS IN HA+ EM
1

näıve way of doing this could be to insert a detour in the proof. Apply the
following transformation to the intuitionistic proof:

...

9�.M(S�,�)

9�.M(�,�) ! 9�.M(S�,�)
...

7�!

...

9�.M(S�,�)

N?(↵, �) ! 9�.M(S�,�)

8�.N?(↵, �)

N?(↵, �)

9�.M(S�,�)

9�.M(�,�) ! 9�.M(S�,�)
...

This will yield a proof term like the following:

mult cl step attempt := (� .x[(�, y).(f(�) ⇤ �, r y)])(H8�.N
?
(↵,�)

a

�)

This approach does make it possible to exit the recursion once a zero is
encountered. But this would require that the reduction path would not �-reduce
the vacuous �-abstraction, which is something that no common evaluation
strategy would respect. Therefore we have to come up with another trick in
order to get a term that will behave as wanted under a reasonable evaluation
strategy. The trick lies in describing a new Post rule: SinceM(S�, f(�)⇤�) holds
whenever M(�,�) holds, then it is certainly also the case that M(S�, f(�) ⇤ �)
holds whenever M(�,�) and N?(↵, �) holds. This becomes the Post rule

M(�,�) N?(↵, �)

M(S�, f(�) ⇤ �)

Thereby the aim is to encode the use of the hypothesis into the atomic level,
such that the reduction rules of HA + EM

1

cannot remove it. To obtain
the sought-after proof we simply make the following transformation on the
intuitionistic proof:

M(�,�)

M(S�, f(�) ⇤ �)
9�.M(S�,�)

...

7�!
M(�,�)

8�.N?(↵, �)

N?(↵, �)

M(S�, f(�) ⇤ �)
9�.M(S�,�)

...

In the proof term, this transformation amounts to replacing the occurrence of

r y with r y (H8�.N
?
(↵,�)

a

�). Thus, the term for the left hand side will be

mult cl lhs := Rec (1, True) (���x.x[(�, y).(f(�)⇤�, r y (H8�.N
?
(↵,�)

a

�))]) ↵,

and the complete term is

mult cl := �↵.(mult cl lhs k
a

mult cl rhs).

6.2. MULTIPLICATION EXAMPLE 65

Reduction of mult cl

We will examine how mult cl reduces by example. The term is in normal
form, so we need to apply it to a number. To keep the reduction graph on a
reasonable size, we will choose the number 1. Since the right hand side does
not have any occurrences of ↵, then all the redexes, except for the exceptional
exits, will occur on the left hand side. We use the abbreviations step for

���x.x[(�, y).(f(�) ⇤ �, r y (H8�.N
?
(1,�)

a

�))], and H for H8�.N
?
(1,�)

a

. Thus, we
will examine the reduction graph of the term Rec (1, True) step 1:

Rec (1, True) step 1

step 0 (Rec (1, True) step 0)

step 0 (1, True)

(�x.x[(�, y).(f(0) ⇤ �, r y (H 0
::

))])(Rec (1, True) step 0)

(�x.x[(�, y).(f(0) ⇤ �, r y (H 0
::

))]) (1, True)

(Rec (1, True) step 0)[(�, y).(f(0) ⇤ �, r y (H 0
::

))]

(1, True)[(�, y).(f(0) ⇤ �, r y (H 0
::

))]

(f(0) ⇤ 1, r True (H 0
::

))

The wavy underline signifies that one of two things can happen: Either
f(0) 6= 0, so N?(1, 0) holds, and then we can do an EM

1

1

-reduction to replace
the subterm with True, or f(0) = 0, and thus we can do an exceptional exit

66 CHAPTER 6. PROGRAMMING WITH TERMS IN HA+ EM
1

with an EM
1

4

-reduction, for example:

(1, True)[(�, y).(f(0) ⇤ �, r y (H 0))] k
a

(0, W9�.N(↵,�)

a

[(�, x).r x])

! (0, (0, True)[(�, x).r x])

! (0, r True).

Therefore, if we use a reduction strategy that prioritizes EM
1

4

-reductions,
it is clear that we can evaluate in a more e�cient manner with this operator,
especially if there is an exception early: Assume for instance that f(999) = 0,
and that want to evaluate mult cl 1000. Then we can find the quite short
reduction path

mult cl 1000

⇣ (�x.x[(�, y).(f(999) ⇤ �, r y (H 999))])(Rec (1, True) step 999) k
a

rhs

! (0, (999, True)[(�, x).r x])

! (0, r True),

where rhs = (0, W9�.N(↵,�)

a

[(�, x).r x]).

Chapter 7

Program extraction from
HA + EM1

In this chapter, we introduce an operational semantics for system HA+ EM
1

that is based on a call-by-name evaluation. We will test this on some situations
with the examples from Chapter 6.

7.1 Natural semantics for HA+ EM1

We provide HA+ EM
1

with a natural semantics (also known under the names
big-step semantics or evaluation semantics).

Definition 7.1.1. We define the judgments u + (u0;�) by the inference rules

in the Figures 7.1 and 7.2, where � is a sequence of terms of the form H
8↵.P(↵)
a

n,
where n is a numeric term. In all of the rules, n represents numeric terms, and
the other letters represent HA+ EM

1

-terms.

By a " �, we mean that there is a H
8↵.P(↵)
a

such that H8↵.P(↵)
a

2 �.

The intended meaning of u + (u0;�) is, that u will evaluate to the normal
form u0, and so if ` u : 9↵.P(↵), then by Theorem 5.6.1, u0 will be of the form
(n, u00), where n is a numeral such that P(n).

We can see from the following rule, that this semantics is based on a
call-by-name strategy:

u + (�x.u0;�) u0[x := v] + (v0;�0)

uv + (v0;�0)

The purpose of the � is to keep track of the EM
1

-hypotheses such that the
rules in Figure 7.2 can handle exceptions. It is indeed the intention that �
will be empty whenever u + (u0;�) and FCV(u) = ;.

67

68 CHAPTER 7. PROGRAM EXTRACTION FROM HA+ EM
1

x + (x; ;)
u + (�x.u0;�) u0[x := v] + (v0;�0)

uv + (v0;�0)

u
1

+ (u0
1

;�
1

) u
2

+ (u0
2

;�
2

) · · · u
n

+ (u0
n

;�
n

)

r u
1

u
2

· · · u
n

+ (r u0
1

u0
2

· · · u0
n

;�
1

,�
2

, . . . ,�
n

)

u + (u0;�)

�x.u + (�x.u0;�)

u + (u0;�)

�↵.u + (�↵.u0;�)

u + (�↵.u0;�) u0[↵ := n] + (v;�0)

un + (v;�0)

u
0

+ (v
0

;�
0

) u
1

+ (v
1

;�
1

)

hu
0

, u
1

i + (hv
0

, v
1

i;�
0

,�
1

)

u + (hv
0

, v
1

i;�)

⇡
i

u + (v
i

;�)

u + (u0,�) v + (v0,�0) w + (w0,�00)

u[x.v, y.w] + (u0[x.v0, y.w0];�,�0,�00)

u + (◆
i

u0;�) v
i

[x
i

:= u0] + (v0;�0)

u[x
0

.v
0

, x
1

.v
1

] + (v0;�,�0)

u + (u0;�)

◆
i

u + (◆
i

u0;�)

u + (u0;�)

(n, u) + ((n, u0);�)

u + ((n, u0);�) v[↵ := n][x := u0] + (v0;�0)

u[(↵, x).v] + (v0;�,�0)

u + (u0;�)

Rec u v 0 + (u0;�)

Rec u v n + (w;�) v n w + (w0;�0)

Rec u v (Sn) + (w0;�0)

uw k
a

vw + (u0;�)

(u k
a

v)w + (u0;�)

⇡
i

u k
a

⇡
i

v + (u0;�)

⇡
i

(u k
a

v) + (u0;�)

u[x
0

.w
0

, x
1

.w
1

] k
a

v[x
0

.w
0

, x
1

.w
1

] + (u0;�)

(u k
a

v)[x
0

.w
0

, x
1

.w
1

] + (u0;�)

u[(↵, x).w] k
a

v[(↵, x).w] + (u0;�)

(u k
a

v)[(↵, x).w] + (u0;�)

Figure 7.1: Natural semantics for HA+ EM
1

, part 1 of 2

7.1. NATURAL SEMANTICS FOR HA+ EM
1

69

n is not closed, or P(n) ⌘ False

H
8↵.P(↵)
a

n + (H8↵.P(↵)
a

n, H
8↵.P(↵)
a

n) W
9↵.P?

(↵)

a

n + (W9↵.P
?
(↵)

a

n; ;)

n is closed, and P(n) ⌘ True

H
8↵.P(↵)
a

n + (True, ;)

u + (u0;�) a 6 " �

u k
a

v + (u0;�)

u + (u0;�) v[a := n] + (v0;�0) H
8↵.P(↵)
a

n 2 �, P(n) ⌘ False

u k
a

v + (v0;�0)

where H8↵.P(↵)
a

n is the first occurrence in � with a.

u + (u0,�) v + (v0;�0) a " �, but if H8↵P(↵)a n 2 �, then P(n) ⌘ False

u k
a

v + (u0 k
a

v0;�,�0)

Figure 7.2: Natural semantics for HA+ EM
1

, part 2 of 2

Most of the rules are obvious choices for a call-by-name semantics. The
more interesting rules are the ones in Figure 7.2. Especially the rule

u + (u0;�) v[a := n] + (v0;�0) H
8↵.P(↵)
a

n 2 �, P(n) ⌘ False

u k
a

v + (v0;�0)

where H
8↵.P(↵)
a

n is the first occurrence in � with a, is important. It is here
that an exception is thrown. By choosing the first occurrence in � that gives
rise to the exception, we make sure that it is the inner-most occurrence of H

a

that is checked first, and therefore the problem with confluence is solved. This
will ensure, for example, that the searching example from Chapter 6 provides
a top-down search algorithm.

Lemma 7.1.2. If u + (u0,�), then u0 is in normal form.

Proof. From strong normalization of HA+EM
1

we get that all such derivations
must be finite, and by induction on the derivations we get that u0 must be in
normal form.

Lemma 7.1.3. If u + (u0,�) and u + (u00,�0), then u0 = u00.

70 CHAPTER 7. PROGRAM EXTRACTION FROM HA+ EM
1

Proof. By induction on the derivation. There is always only one possible
reduction rule. Especially, in the u k

a

v-situation, only one of the three rules
may apply.

7.2 Searching

We return to the search example from Chapter 6. Consider again the situation
where n = 1, and P (0),¬P (1) holds. This means we have the atomic formulas
P(0),P(1), and Q(0). Since we in this example are working with hypothesis
variables, we have to add the following rules:

h
1

+ (h
1

; ;) h
2

+ (h
2

; ;)

Now, we wish to find a term u and a � such that

(0, r (r h
2

(Rec h
1

search cl step 1))) k
a

W9↵Q(↵)

a

+ (u;�).

It is easy to check that

(���x.r x (H
a

�)) 0 h
1

+ (r h
1

(H
a

0), H
a

0),

and using this we can derive

h
1

+ (h
1

; ;)
Rec h

1

step 0 + (h
1

, ;) (���x.r x (H
a

�)) 0 h
1

+ (r h
1

(H
a

0), H
a

0)

Rec h
1

step 1 + (r h
1

(H
a

0), H
a

0)

which furthermore brings us to the conclusion that

(0, r (r h
2

(Rec h
1

search cl step 1))) + ((0, r (r h
1

(H
a

0))); H
a

0).

Let us abbreviate this so: lhs + (lhs0; H
a

0). Thus, knowing what the left-hand
side reduction is, we can finalize the derivation:

lhs + (lhs0; H8↵.Q
?
(↵)

a

0)

True + (True; ;)
(0, True) + ((0, True); ;) Q(0) ⌘ False

lhs k
a

W
9↵.Q(↵)

a

+ ((0, True), ;)

Thus, we can conclude that, in our semantics, the searching term in this
situation will evaluate to (0, True), as expected.

7.3. MULTIPLICATION 71

7.3 Multiplication

We will now return to the multiplication example of Chapter 6, and test our
natural semantics on the term mult cl 1, where we assume that f(0) = 0
(which means that N(1, 0) ⌘ True). Recall that mult cl is defined as

mult cl := �↵.(mult cl lhs k
a

mult cl rhs),

where

mult cl lhs := Rec (1, True) (���x.x[(�, y).(f(�) ⇤ �, r y (HN
?

a

�))]) ↵,

mult cl rhs := (0, W9�.N(↵,�)

a

[(�, x).r x]).

The last rule in the derivation will be

mult cl + (mult cl, H
a

�) lhs k
a

rhs + (u,�)

mult cl 1 + (u,�)

where

lhs := Rec (1, True) (���x.x[(�, y).(f(�) ⇤ �, r y (HN
?

a

�))]) 1

rhs := mult cl rhs.

In order to find (u,�), we will first need to find (v,�0) such that lhs + (v,�0).
For this we first observe that

Rec (1, True) step 0 + (1, True, ;),

and then:

step 0 + (�x.x[(�, y).w0]; Ha 0)

(1, True) + ((1, True), ;) w + (w; Ha 0)

(1, True)[(�, y).w0] + (w; Ha 0)

step 0 (1, True) + (w; H
a

0)

where

w := (f(0) ⇤ 1, r True (H
a

0)),

w0 := (f(0) ⇤ �, r True (H
a

0)).

Hence we have

Rec (1, True) step 0 + (1, True, ;) step 0 (1, True) + (w; H
a

0)

lhs + (w; H
a

0)

The right hand side will be evaluated thus:

(0, True) + ((0, True); ;) r True + (r True; ;)
(0, True)[(�, x).r x] + (r True; ;)

(0, (0, True)[(�, x).r x]) + ((0, r True); ;)

72 CHAPTER 7. PROGRAM EXTRACTION FROM HA+ EM
1

So we can finish the derivation by tying these together:

lhs + (w; Ha 0) (0, (0, True)[(�, x).r x]) + ((0, r True); ;) N(1, 0) ⌘ True

lhs k
a

rhs + ((0, r True); ;)

Therefore,
mult cl 1 + ((0, r True); ;),

as expected.

Chapter 8

Conclusion

In this thesis, the basics of classical program extraction have been discussed.
We have introduced the systems �µ and �µT as examples of confluent �-
calculi with control, that correspond to classical logic via the Curry–Howard
correspondence. Furthermore, we have discussed the system HA+EM

1

which is
a non-confluent Curry–Howard system for an arithmetic with limited classical
reasoning, and we have presented Aschieri’s new proof of strong normalization of
HA+EM

1

. Then, we have worked out some examples of proofs in HA+EM
1

and
analyzed their reduction possibilities. Lastly, we have developed an operational
semantics for HA+EM

1

which gives a deterministic way of extracting witnesses
from proofs of ⌃0

1

-sentences and tested it on our examples.

8.1 Further research

The semantics introduced in Chapter 7 does not very well describe how the
witnesses are extracted, for this it would be better with a structural operational
semantics (also known as small-step semantics), which would describe each
individual step in the computation, and not just the overall result, as is the
case with the natural semantics (or big-step semantics). I did not succeed in
doing this in a satisfactory manner, but it would be interesting to see such a
semantics.

Extraction to �µT

One of my hopes was to define a translation J·K of HA + EM
1

-terms into
�µT-terms, such that if `HA+EM1 u : 8↵9�.P(↵,�), then `

�µ

T JuK : N ! N in
such a way that if JuKn ⇣ m, then P(n,m) ⌘ True. My approach was to
define JuK�, where the set � is used to store the hypothesis variables along
with their relevant information (when in the left hand side of k

a

, this relevant
information is the term on the right hand side, and when in the right hand
side, the relevant information is the witness provided by the left hand side).

73

74 CHAPTER 8. CONCLUSION

The following is my proposed definition:

Definition 8.1.1 (Term extraction). Let u be a HA + EM
1

-term in normal

form. We define JuK as JuK;, where this is given recursively by:

JmK� = m, if m is a numeric term

J�↵.uK� = �↵N. JuK�

J�x⌧ .uK� = �xJ⌧K. JuK�

JuvK� = JuK� JvK�

JRec u v nK� = Rec JuK� JvK� JnK�

Ju k
a

vK� = catch
a

JuK�,(a,v)

r
W
9�Q?

(�)

a

z
�,(a,n)

= n

Ju[(↵, x).v]K� = JvK� [↵ := JuK�]
J(m,u)K� = m, if u contains no H

a

with a 2 �

J(m,u)K�,(a,v) = if Q(") then J(m,u)K� else throw
a

JvK�,(a,") ,

if u has H8�.Q(�)

a

" as subterm,
and " is not bound in u

When we apply this transformation on the term mult cl from Chapter 6
we get the following:

Jmult clK = �↵N.catch
a

Jmult cl lhsK(a,mult cl rhs) .

Let � = (a, mult cl rhs), and say that

step := ���x.x[(�, y).(f(�) ⇤ �, r y (H8�.N
?
(↵,�)

a

�))],

for then

Jmult cl lhsK� = JRec (1, True) step ↵K�

= Rec 1 JstepK� ↵

where

JstepK� =
r
���x.x[(�, y).(f(�) ⇤ �, r y (H8�.N

?
(↵,�)

a

�))]
z
�

= ��N�xN.
r
f(� ⇤ �, r y (H8�.N

?
(↵,�)

a

))
z
�

[� := JxK�]

= ��N�xN.if N?(↵, �) then f(�) ⇤ x

else throw
a

Jmult cl rhsK(a,�) ,

and

Jmult cl rhsK(a,�) =
r
(0, W9�.N(↵,�)

a

[(�, x).r x])
z
(a,�)

= 0.

8.1. FURTHER RESEARCH 75

Therefore the complete extracted term will be

�↵N.catch
a

Rec 1 (��N�xN.if N?(↵, �) then f(�) ⇤ x else throw
a

0) ↵.

It can be checked that this term fulfills the specification.
My hope is that the following question can be answered positively, but I

was not able to prove it.

Question 8.1.2. Suppose that `HA+EM1 t : 8↵9�.P(↵,�), and that t is a
closed HA+ EM

1

-term in normal form. Does it hold that:

• `
�µ

T JtK : N ! N, and

• for any n 2 N, P(n, JtK (n)) holds?

Bibliography

[1] Yohji Akama, Stefano Berardi, Susumu Hayashi, and Ulrich Kohlenbach,
An Arithmetical Hierarchy of the Law of Excluded Middle and Related
Principles, Logic in Computer Science, 2004. Proceedings of the 19th
Annual IEEE Symposium on, IEEE, 2004, pp. 192–201.

[2] Federico Aschieri, Learning, Realizability and Games in Classical Arith-
metic, Ph.D. thesis, Università degli Studi di Torino, Dipartimento di
Informatica and Queen Mary, University of London, School of Electronic
Engineering and Computer Science, 2011.

[3] , Strong Normalization for HA+EM1 by Non-Deterministic Choice,
EPTCS (2013), to appear.

[4] Federico Aschieri and Stefano Berardi, Interactive Learning-Based Realiz-
ability for Heyting Arithmetic with EM

1

, Logical Methods in Computer
Science 6 (2010), no. 3.

[5] Federico Aschieri and Stefano Berardi, A New Use of Friedman’s Transla-
tion: Interactive Realizability, Logic, Construction, Computation, Ontos-
Verlag Series in Mathematical Logic, Berger et al. editors (2012).

[6] Federico Aschieri, Stefano Berardi, and Giovanni Birolo, Realizability and
Strong Normalization for a Curry-Howard interpretation of HA + EM1,
LIPIcs, to appear.

[7] Federico Aschieri and Margherita Zorzi, Interactive Realizability and the
elimination of Skolem functions in Peano Arithmetic, arXiv preprint
arXiv:1210.3114 (2012).

[8] Jeremy Avigad, A Realizability Interpretation for Classical Arithmetic,
Logic Colloquim ’98, Lecture Notes in Logic 13 (Pudlák Buss, Hájek, ed.),
2000.

[9] Henk P. Barendregt, The Lambda Calculus: Its Syntax and Semantics,
2nd ed., Studies in Logic, vol. 103, Elsevier, 1984.

77

78 BIBLIOGRAPHY

[10] Stefano Berardi, Some intuitionistic equivalents of classical principles for
degree 2 formulas, Annals of Pure and Applied Logic 139 (2006), no. 1,
185–200.

[11] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg, Refined
Program Extraction from Classical Proofs, Annals of Pure and Applied
Logic 114 (2002), no. 1, 3–25.

[12] Thierry Coquand and Gerard Huet, The Calculus of Constructions, Infor-
mation and Control 76 (1986).

[13] Matthias Felleisen and Daniel P. Friedman, Control operators, the SECD-
machine, and the �-calculus., 3rd Working Conference on the Formal
Description of Programming Concepts (Martin Wirsing, ed.), North-
Holland Publishing, 1986, pp. pp. 193–219.

[14] Harvey Friedman, Classically and Intuitionistically Provably Recursive
Functions, Müller and Scott (eds.): Higher Set Theory, Springer, 1978,
pp. 21–27.

[15] Gerhard Gentzen, Über das Verhältnis zwischen intuitionistischer und
klassischer Arithmetik, Archive for Mathematical Logic. 16 (1974), no. 3,
119–132 (Originally to appear in Mathematische Annalen 1933, but was
withdrawn).

[16] Herman Geuvers, Robbert Krebbers, and James McKinna, The �µT-
calculus, Annals of Pure and Applied Logic 164 (2013), no. 6, 676–701.

[17] Jean-Yves Girard, Paul Taylor, and Yves Lafont, Proofs and Types, Cam-
bridge University Press, 1989.

[18] Kurt Gödel, Zur intuitionistischen Arithmetik und Zahlentheorie, Ergeb-
nisse eines mathematischen Kolloquiums 4 (1933), 34–38.

[19] E Mark Gold, Limiting Recursion, The Journal of Symbolic Logic 30
(1965), no. 1, 28–48.

[20] Timothy G Gri�n, A formulae-as-type notion of control, Proceedings of
the 17th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, ACM, 1989, pp. 47–58.

[21] Hugo Herbelin, An intuitionistic logic that proves Markov’s principle,
Logic in Computer Science (LICS), 2010 25th Annual IEEE Symposium
on, IEEE, 2010, pp. 50–56.

[22] Thomas Jech, Set Theory, 3rd millenium ed., Springer monographs in
mathematics, Springer, 2002.

BIBLIOGRAPHY 79

[23] Ingebrigt Johansson, Der Minimalkalkül, ein reduzierter intuitionistischer
Formalismus, Compositio mathematica 4 (1937), 119–136.

[24] Robbert Krebbers, Classical logic, control calculi and data types, Master’s
thesis, Radboud Universiteit Nijmegen, 2010.

[25] Georg Kreisel, Mathematical Significance of Consistency Proofs, The
Journal of Symbolic Logic 23 (1958), no. 2, 155–182.

[26] , On Weak Completeness of Intuitionistic Predicate Logic, The
Journal of Symbolic Logic 27 (1962), no. 2, 139–158.

[27] P. J. Landin, Correspondence between ALGOL 60 and Church’s Lambda-
notation: part I, Commun. ACM 8 (1965), no. 2, 89–101.

[28] Yevgeniy Makarov, Practical Program Extraction from Classical Proofs,
Electronic Notes in Theoretical Computer Science 155 (2006), 521–542.

[29] Michel Parigot, Programming with proofs: A second order type theory,
ESOP ’88 (H. Ganzinger, ed.), Lecture Notes in Computer Science, vol.
300, Springer Berlin Heidelberg, 1988, pp. 145–159.

[30] , �µ-calculus: An Algorithmic Interpretation of Classical Natural
Deduction, Logic programming and automated reasoning, Springer, 1992,
pp. 190–201.

[31] , Proofs of Strong Normalisation for Second Order Classical Natural
Deduction, Journal of Symbolic Logic (1997), 1461–1479.

[32] Christine Paulin-Mohring, Extracting F
!

’s programs from proofs in the cal-
culus of constructions, Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (New York, NY,
USA), POPL ’89, ACM, 1989, pp. 89–104.

[33] Rózsa Péter, Recursive Functions, Academic Press, New York and London,
1967.

[34] Dag Prawitz, Ideas and Results in Proof Theory, Proceedings of the second
Scandinavian logic symposium, 1971, pp. 235–307.

[35] J. Rees and W. Clinger, Revised Report on the Algorithmic Language
Scheme, SIGPLAN Not. 21 (1986), no. 12, 37–79.

[36] Niels Jakob Rehof and Morten Heine Sørensen, The ��-calculus, Theo-
retical Aspects of Computer Software, Springer, 1994, pp. 516–542.

[37] Morten Heine Sørensen and Pawe l Urzyczyn, Lectures on the Curry-
Howard Isomorphism, 1st ed., Studies in Logic, vol. 149, Elsevier, Amster-
dam, 2006.

80 BIBLIOGRAPHY

[38] Gerald Jay Sussman and Guy L. Steele, Jr., Scheme: A Interpreter for
Extended Lambda Calculus, Higher-Order and Symbolic Computation 11
(1998), no. 4, 405–439 (English).

[39] W. W. Tait, Intensional Interpretations of Functionals of Finite Type I,
The Journal of Symbolic Logic 32 (1967), no. 2, 198–212 (English).

[40] C.L. Talcott, The essence of Rum: A theory of the intensional and exten-
sional aspects of Lisp-type computation, Ph.D. thesis, Stanford University,
1985.

	Contents
	Introduction
	Related work
	Outline
	Notation

	Preliminaries
	Natural deduction
	First-order logic
	The untyped lambda calculus
	Simply typed lambda calculus
	Gödel's System T
	Annotated first-order proofs

	Friedman's A-translation
	The arithmetics PA and HA
	Double-negation translation
	A-translation
	The proof

	Control operators
	The system
	The system T

	Arithmetic with exceptions: HA+EM_1
	Post rules
	HA
	HA+EM_1
	The system HA+EM_1^*
	Strong normalization for HA+EM_1^* and HA+EM_1
	Existential witness property

	Programming with terms in HA+EM_1
	Searching
	Multiplication example

	Program extraction from HA+EM_1
	Natural semantics for HA+EM_1
	Searching
	Multiplication

	Conclusion
	Further research

	Bibliography

